
2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial.htm[01.04.2009 23:31:49]

br

ET Mapping Tutorial

Introduction

This tutorial has been set up to help would-be mappers looking for a step-by-step guide from the beginning.
It assumes the reader has no idea how to use GtkRadiant and knows nothing about scripting and the like.

These pages were originally created for members of the TibeT clan and regular players on the TibeT servers,
but anyone finding this tutorial is welcome to use it :)

I don't claim to know everything about mapping but I've learnt enough from various sources to be able to
make maps of reasonable complexity. I've had a number of people asking various mapping questions and I
thought it was a better idea to explain it all once to anyone interested. The tutorial is incomplete but I
continue to add pages as I get the time.

Be aware that the subject is very large so there's a lot to explain; and that to make a decent fair-sized map
can easily take over 200 hours, so with this as a hobby you need a lot of patience and spare time, but at
least the tools to do the job are free. The best maps out there might have taken their authors 18 months to
create, depending on how much free time they had.

Disclaimer: I may be wrong in my understanding of any aspect of the subject, but hey, I'm doing my best :)

Introductory topics

To get from knowing nothing about mapping to being able to run around in your own first little map, follow
these introductory topics in order from start to finish.

Getting Started
Making your first brush
Making your first map

First set of intermediate topics

Create a building inside a landscape, with a destructible window and working door.

Creating an environment
Making a building outline in your environment
Making a door
Making a destructible window

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial.htm[01.04.2009 23:31:49]

Second set of intermediate topics

A break from brushes: a quick delve into some of the other mapping elements.

Creating the initial script
Creating the mission text to be shown as the map loads
Adding ambient sounds

Third set of intermediate topics

Back to Radiant again, for models, simple destructibles and constructibles. Starting to get more interesting
now. Don't attempt these unless you've completed the previous topics.

Planting a tree
Making stuff you can shoot up
Making barbed wire
Making a ladder
Making a constructible MG42

Fourth set of intermediate topics

A set of topics with some variety, helping you ease into some of the more complicated subjects..

Secure doors
Lighting
Detail brushes vs structural brushes
Health and ammo cabinets

Fifth set of intermediate topics

Some of the principal game features, the CP, bendy shapes and terrain.

Command Posts
Curved walls and arches
Cylinders, cones and curved roads
Making terrain using GtkGenSurf
Fine tuning the terrain by dragging vertices
Skyboxes

Sixth set of intermediate topics

Some topics that help to bring interest to your map.

Bespoke graphics
Making a constructible object like a ramp
Making a destructible object like a gate
Forward spawn flags
Water
Team speech

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial.htm[01.04.2009 23:31:49]

Final set of intermediate topics

This last set of intermediate topics cover the remaining components you'll want to make a distributable PK3
package.

Limbo camera and objectives narrative
Making the game end
Generating a tracemap
Making the command map
Making the picture to be shown while the map loads
Making a PK3 file

Advanced topics

This final set of topics covers some of the more complicated stuff that you may never want to use - but if
you've made it this far with the tutorial, you probably will :)

The Tank
Scripting in detail
Grabbing the gold or radar parts, etc
Making constructible/destructible doors
Bespoke sound
Making something simple move
Trucks
Shaders
Custom command map icons

PythonOnline

http://www.pythononline.co.uk/[01.04.2009 23:31:53]

Home
Making websites for small businesses

Home About us Our services Our customers Contact us

We are a small website-development company,
specialising in providing a personal service at affordable
prices.

On your behalf we register your domain name and organize
the hosting of your new website with the UK's largest web
hosting company. We then design and create a professional
custom website to meet your needs. In addition we can
provide graphic design for your corporate identity to
complement the style of the website.

You are welcome to contact us to chat about your
requirement, even if you are not quite sure what it is! We
avoid tech-speak and talk in plain English to make the
whole process straightforward for both parties.

2bit.PythonOnline.co.uk

http://www.pythononline.co.uk/et/[01.04.2009 23:31:55]

Map update log

Download View info

Berlin 1.2.0 Mar 2009

Breakout 2 1.4.0 Feb 2009

Chartwell 1.4.0 Feb 2009

Glider PanzerDuel
1.0.1

Dec 2008
Glider PanzerDuel
LowGrav 1.0.1

Cluedo 1.3.0 Dec 2008

Radar Summer 1.3.0 June 2008

Troop Train 1.2.0 May 2008

British Bulldog 1.6.0 Dec 2007

Operation Chariot
1.2.0

Oct 2007

RTCW Depot 2 1.0.2 Sep 2007

Battery Recharged
1.3.0

Aug 2007

Breakout 3.7.1 June 2007

110 Factory 2.0.0 June 2007

TankBuster 2.0.0 May 2007

Glider 3.0.2 May 2007

Tiger 1.1.0 Aug 2006

Ludendorff Bridge
1.1.0

Jan 2006

2Tanks 1.7.1 Oct 2005

6Flags 1.1.0 July 2005

This page has all my ET map pk3 files available for download. Please ensure you play the maps
using these most recent versions.

Thanks to -=Hawk=- for designing this web page.

If you would like to follow my mapping tutorial, please click here.

Berlin

A Berlin street, 1945. Allies have to capture the street in
house-to-house combat.

The first buildings to capture are marked by a red flare (which
turns blue when Allies capture the flag and red on Axis
recapture).

Flags (which are always on the ground floor) must be held by
the Allies for a total of 90 seconds to make the capture
permanent.

At that point the flare turns yellow, indicating that Allies must
now eliminate all Axis defenders in the building to secure it. So
long as at least one Axis defender remains alive in the
building, it remains unsecured. When the flare turns yellow
Axis have 20 seconds to re-occupy the building - after that
time as soon as no Axis soldiers remain alive in the building it
is secured.

When the first buildings are secured the yellow flares are
extinguished and red flares are lit outside the next buildings
to be captured. In this way Allies progress up the street,
trying to secure a total of 7 buildings to win.

There are no dummy windows in the map, which means every
window opening potentially conceals an enemy soldier: so
advancing in the open street is a risky business. Allied cov ops
will need to provide smoke cover and seek out enemy snipers
to assist the advance of Allied troops.

The flares are an important element in the game, and are
produced using ET smoke generator entities. Some players
will have disabled smoke, perhaps to help performance on
low-spec machines or maybe to gain a small visual advantage,
and so will not be able to see the flares.

To see flare smoke you need to set cg_wolfparticles to 1 (on
NQ you need cg_smokeparticles set to 1).

Version 1.2.0
March 2009

First public release

screen shots

Glider Panzer Duel

An open version of the Glider map with no objectives, it's just
a playground for team panzer deathmatch.

There is nothing to build and no obstructions. The glider is
pre-built and can be flown by anyone, and shot down by any
weapon. It auto-rebuilds when destroyed.

The spawn locations change every minute, but you can
override the random choices by selecting any of the spawns on
the command map. All spawn locations are available, some of
which might be shared by the enemy. Spawn times are every
12 seconds.

Ammo boxes supplying unlimited ammo are dotted around the
map, and recharge times are quicker than normal.

The map ends after 30 mins (arbitrarily choosing Axis as the
winners).

Version 1.0.1
December 2008

Silly festive release

Also alternative LowGrav version

Breakout 2

http://www.pythononline.co.uk/et/berlin_120.pk3
http://www.pythononline.co.uk/et/breakout2_140.pk3
http://www.pythononline.co.uk/et/chartwell_140.pk3
http://www.pythononline.co.uk/et/glider_panzerduel_101.pk3
http://www.pythononline.co.uk/et/glider_panzerduel_101.pk3
http://www.pythononline.co.uk/et/glider_panzerduel_lowgrav_101.pk3
http://www.pythononline.co.uk/et/glider_panzerduel_lowgrav_101.pk3
http://www.pythononline.co.uk/et/cluedo_130.pk3
http://www.pythononline.co.uk/et/radar_summer_130.pk3
http://www.pythononline.co.uk/et/trooptrain_120.pk3
http://www.pythononline.co.uk/et/bulldog_160.pk3
http://www.pythononline.co.uk/et/chariot_120.pk3
http://www.pythononline.co.uk/et/chariot_120.pk3
http://www.pythononline.co.uk/et/rtcw_depot2_102.pk3
http://www.pythononline.co.uk/et/battery_recharged_130.pk3
http://www.pythononline.co.uk/et/battery_recharged_130.pk3
http://www.pythononline.co.uk/et/breakout_371.pk3
http://www.pythononline.co.uk/et/110_factory_200.pk3
http://www.pythononline.co.uk/et/tankbuster_200.pk3
http://www.pythononline.co.uk/et/glider_302.pk3
http://www.pythononline.co.uk/et/tiger_110.pk3
http://www.pythononline.co.uk/et/ludendorff_110.p3k
http://www.pythononline.co.uk/et/ludendorff_110.p3k
http://www.pythononline.co.uk/et/2tanks_171.pk3
http://www.pythononline.co.uk/et/6flags_110.pk3

2bit.PythonOnline.co.uk

http://www.pythononline.co.uk/et/[01.04.2009 23:31:55]

The sequel to the original Breakout map, Breakout 2 is
available now.

Picking up where the original Breakout left off, the sequel has
far better graphics and some great new gameplay features.

Allies have to escort the battle-stained Tiger tank along
railway track through a station and its surrounding village to
escape.

In a departure from the usual tank barrier format, each of the
main barrier objectives is a sequential double objective.

Stage 1
Allies escort the tank along the rail track towards
the station.

Axis attempt to dynamite the railway footbridge to
prevent the tank reaching the station.

If successful, Allies have to dynamite the wreckage
to clear the path.

Stage 2 Allies get the tank to the station.

Allies must build a ramp to get the tank off the
track. Nearby the Axis need to build a tank barrier
to prevent the tank entering the village. Both
teams will be attempting to dynamite the enemy's
construction.

Stage 3
Allies get through the village and approach the road
tunnel under the railway.

Axis attempt to dynamite the railway tunnel to
prevent the tank reaching the bunker.

If successful, Allies have to dynamite the rubble to
clear the path.

Stage 4
Allies enter the bunker and need to leave via the
exit at its far side.

Axis attempt to dynamite the control room over the
bunker exit to prevent the tank escaping. Note that
if the control room is destroyed, it also destroys the
Axis CP.

If successful, Allies have to dynamite the debris to
clear the path. This allows Axis to repair their CP.

 Allies win when they get the tank out of the bunker.

Version 1.4.0
February 2009

Axis barracks spawn given extra
routes out, to prevent spawners
from being mown down by tank

MG at tunnel.

Axis barracks spawn and bunker
spawn doors given glass panels.

Troop Train

Axis are transporting armour reinforcements to the front line.
Allies must destroy the 2 tanks on the trains before they
arrive at their destination.

All the action takes place on two moving trains adjacent on
parallel tracks.

First objective is to blow up the crates that block the Allies
path up the train. This gives them access to the midtrain flag
forward spawn, and sets them up for the final push to the
front of the train where the Tiger tanks are being transported.

Players can move through the carriages, or along the top or
sides, and can jump from one train to the other.

Passing overhead gantries and bridges help to prevent sniper
domination, and quick respawn times mean players are never
missing from the action for long. The straightforward layout
also means it's quick to learn and no-one gets lost.

With a 10 minute map time limit, I believe it is best played in
stopwatch mode.

Recommended 2-8 players per team, probably mayhem
beyond that.

Version 1.2.0
May 25th, 2008

Click the image below to view the
Troop Train gallery

Cluedo

Set in the country manor of the board game Cluedo (Clue in
the U.S.), there is no real scenario - this is played just for
laughs as a break between "proper" maps. Each game lasts
about 10 minutes.

Axis spawn in the Ballroom (centre top of the map) and Allies

Version 1.3.0
December, 2008

Extra bounce mats added.

Mines disabled (accidentally!), to

2bit.PythonOnline.co.uk

http://www.pythononline.co.uk/et/[01.04.2009 23:31:55]

in the Hall (centre bottom).

A flag then randomly spawns in one of the seven other
rooms. The upper edge of the room's walls glow white when
the flag is active inside.

The flag can be captured by either team, giving the white glow
an inner blue (allies) or red (axis) core to show the current
possessor. When the flag is held for a total of 90 seconds by
a team it is secured and removed from the map. The white
glow is removed and the inner core remains to show that the
room has been fought over and which team secured it.

This process is repeated until one team has secured four flags
and is victorious.

Players can move freely between the rooms and enter the
cellar. The doors are glass lined so that players are aware of
anyone camping the other side, which is legitimate and likely
to be the case.

Each room can be entered or exited through its windows, and
the four corner rooms have secret passages which link them.
Players can also move around and over the building.

Each of the seven flag rooms has a trap which is activated by
the lever in the corridor outside the room. Once a trap is
activated it cannot be re-used for 30 seconds.

The traps make the interior of the room uncomfortable or
downright dangerous for its occupants, which helps to shift
players camping the flag. The player activating a trap is
teleported to a location outside the room, so he can witness
the carnage he has caused.

To make things even more lively, the players will find there
are all sorts of places that engineers can plant mines to
surprise the unwary...

The action is fast and frantic, with low respawn times to
ensure all the players stay in the thick of it.

Recommended for teams of between 2 and 12 per team.

be restored in next release.

Click the image below to view the
Cluedo gallery

British Bulldog

The entire action centres on the race to deliver 6 gold crates
into your team's vaults.

Engineers are not necessary: there are no dynamitable
objectives and nothing to build.

This is a manic romp and not to be taken seriously :)

GOLD CRATES
Grab each of your 6 gold crates one at a time and deliver
them to the vault. Allied crates from the East cages must go
into the West vault, and vice-versa. Similarly for the Axis
crates in the North cages to the South vault and vice-versa.
Arrows shown in team colours (Allies=blue Axis=red) guide the
way for the current objective.

FLAGS
There are four flag poles. They are NOT forward spawn points:
instead they function like a Command Post. Each flag captured
improves your team's Charge speed:

0 flags = no bonus
1 flag = small bonus
2 flags = better bonus, plus Cov Op landmine warnings are
transmitted
3 flags = good bonus
4 flags = great bonus

STARS
Stars will drop to the ground from time to time. Grab them
before they disappear to be granted power-ups and bonuses.
Notable powerups are:

Version 1.6.0
4th December, 2007

2bit.PythonOnline.co.uk

http://www.pythononline.co.uk/et/[01.04.2009 23:31:55]

Expressway. This provides a launch pad from the spawn
point to the opposite side of the map. Handy when the next
objective is over there.
Sleigh pad. This provides a jump pad (located at the
snowman) up to the flying sleigh. The pad operates only when
the sleigh is overhead. When ridden, the sleigh will launch
dual panzer strikes at the enemy base.

Operation Chariot

In 1942 the greatest threat to allied shipping was the mighty
German battleship, Tirpitz. Her vast size meant that the only
dock on the Atlantic seaboard that could accommodate her
was at St Nazaire.

So Operation Chariot was born, its mission to blow up the
dock and neutralize the threat of the Tirpitz.

The game commences with the allies having rammed the
south gate with the destroyer HMS Campbeltown. They must
now attempt to destroy as many of the 6 main dockyard
facilities as possible.

There are 6 objectives to destroy, with victory being achieved
to differing degrees at game end:

0-1 objectives destroyed DECISIVE Axis victory
2 objectives destroyed Major Axis victory
3 objectives destroyed Marginal Axis victory

4 objectives destroyed Marginal Allied victory
5 objectives destroyed MajorAllied victory
6 objectives destroyed DECISIVE Allied victory

The map is very open and the allies can attack the objectives
in any order - however, for the sake of gameplay, they don't
have it all their own way.

The Allies must deliver a demolition charge, taken from the
ship's hold, to any objective before it can be dynamited and
destroyed. Two demolition charges are initially available, and
when the first two objectives have been destroyed another two
demolition charges are made available in the ship's hold. When
the fourth objective has been destroyed, the final two charges
become available.

This allows the allies to choose their targets, but limits them
to attacking up to two at a time.

In addition, the axis have two barracks for their spawning.
One is near 3 objectives and the second near the other 3
objectives. Axis players always spawn in the South Barracks,
but have a passage that links the two barracks instantaneously
- that is, an axis player at the South Barracks can move
immediately (teleport) to the East Barracks and vice versa.

This is like having a choice of 2 spawn points, but without the
bother of selecting them on the command map.

To guide axis players to the objectives under threat, there are
ingame command maps in each Barracks. Indicators on these
maps show which objectives are under attack, and which ones
are especially in danger because demolition charges have been
placed.

By checking this map on spawning, axis players can take
themselves immediately to the action.

Version 1.2.0
25th October, 2007

Corrects the mistake which made
the carried obj icon visible

through walls.

I quite liked the effect but it
confused and annoyed some

players.

This is a joint project with Avoc,
author of Nemo.

Click the image below to view the
gallery of images taken during

development

RTCW Depot 2

RTCW Depot was one of my favourite RTCW maps which I
always hoped would turn up on ET. It never did, so I have
done a conversion to get this classic played again.

Based on the revised Depot 2, it has a few changes from the
RTCW version but remains essentially the same.

The enemy forces confront each other in a rail depot. The

Version 1.0.2
September 28th, 2007

Some players found v1.0.1 too
dark. Version 1.0.2 has had the

ambient light increased.

Version 1.0.1

http://www.pythononline.co.uk/et/rtcw_depot2_102.pk3
http://www.pythononline.co.uk/et/rtcw_depot2_101.pk3

2bit.PythonOnline.co.uk

http://www.pythononline.co.uk/et/[01.04.2009 23:31:55]

Allies must destroy the Axis Anti-Aircraft gun at the north end
of the depot before the Axis destroy the Allied Field HQ in the
south.

Best played with larger team sizes of say at least 8 per team,
to allow some players to attack the enemy objective while
some defend their own.

September 6th, 2007

 Click the image below to view the
gallery

Battery Recharged

I'm a big fan of Seawall Battery, and like many players always
wished you could get up onto the gun.

So I thought I would do a conversion of this classic map that
would open up that area for some great firefights.

The original map has a bit of a bottleneck at the ramp, which
lead to the development of a scriptfix to allow the backdoor to
be dynamited.

In this version there are two frontal routes for the allied
assault, so the blowable-backdoor script isn't needed.

Changes from Seawall Battery

Three additional primary objectives created for allies,
making four in total:
destroy radar station (next to bunker)
destroy gun platform
destroy gun controls (same as in original map)
destroy power supply (at bottom of indoor railway slope)

Assault ramp moved to the slope under the gun barrel,
and time taken to build increased by 50%.

Original location of assault ramp smoothed to allow allies
to get up slope on foot.

Axis can build barricade (satchel objective) to block the
new slope.

Players can now reach gun and gun platform from ramp
and from inside gun room.

New Axis-only door added at beach top leading directly
to gun room, to allow Axis to better defend the slope
and the gun.

New constructible (satchel objective) Axis-and-disguised-
cov-op-only door added near "power supply room", to
slow allied access to it via gun room assault.

Allied East Spawn moved closer to the lighthouse.

Axis spawn time reduced to 20 secs.

More areas now permit landmines.

Version 1.3.0
August 31st, 2007

Radar Summer

I've always liked Wurzburg Radar, I just wished it would stop
raining.

So I have done a conversion of this classic ET map to make it
sunny with unlimited views to the horizon. To make it more
interesting than just having nicer weather, I included these
changes:

Extra Axis spawn location in the Road Hut - this helps
them fight back more quickly when Allies take the
Bunker. They will automatically spawn there if the Allies
capture the bunker, unless the side door has been
blown.

Version 1.3.0
June 25th, 2008

All 4 objs now required.

Blowable generator added, which
opens bunker doors when blown.

Click the image below to view the
Radar Summer gallery

2bit.PythonOnline.co.uk

http://www.pythononline.co.uk/et/[01.04.2009 23:31:55]

2 extra Allied primary objectives - destroy the North and
South Radar Stations.
A lot of the player clipping has been removed, allowing
players to get onto high places previously not possible.
The tank in the garage can now be repaired by Axis, and
driven up the road to a defensive position.
New terrain textures, and things like owl hoots replaced
with bird song.
Axis respawn time reduced.
Generator added behind door under wooden bridge.
When blown by covops it opens the door in the bunker
and the door being the main entrance to give additional
passageways.

Glider

Spring 1943, the Austrian Alps: Allied Intelligence has reported
that the enemy are developing a powerful new tank in a
secure research facility. It is vital that one of the prototype
Jagdpanther models be photographed for assessment.

Some Allied 'Horsa' gliders are in enemy hands and are crated
in a nearby Axis outpost: capture the outpost and use the
gliders to assist in the operation.

The Allies are dropped in by parachute and must assault the
Outpost in order to gain access to the gliders crated there.
They must then fly at least one glider from the Outpost to a
hilltop overlooking the research facility. From there they will
be able to destroy the generator, which opens the sealed door
of the tank storage building.

They must steal the tank and transport it to the Outpost,
where a Photo Reconnaissance Spitfire will be able to take
photographs of it.

Version 3.0.2
May, 2007

Major changes to spawning,
including when the allies take the
outpost, the axis paratroopers can
try to get it back; new axis spawn

at centre of map; new allied
spawn in tank garage; and when
the tank reaches the guardpost
the allied spawn is set there.

The parachute spawns are
removed once the allied CP is

built.

The 2nd tank barrier has been
moved to be closer to the outpost.

Axis CP moved to the outpost.

Axis compound spawn enlarged to
give more shoulder room.

Ladder added to allow access to
the top of the garage.

Chartwell

Chartwell, England, 1943.

Axis have launched a surprise paratroop attack on Chartwell,
the home of WInston Churchill, to steal the plans for the D-
Day invasion.

This is a small map of 20 mins duration, centred on the Axis
attempts to enter the house and obtain the plans, best for 6-
16 players per team.

Gameplay

Axis initially spawn at a building nearby, but they can quickly
enable their paratroopers to attack by damaging the AA gun or
the AA gun controls. With either of these out of action, the
Axis spawn location is randomly changed to any location on
the map for each Axis respawn. This allows the Axis team to
attack from potentially any direction.

Allies need to repair both in order to force the Axis back to
the original spawn.

The main Allied spawn is in the basement. There is an Allied-
only flag in the pavilion, which if captured gives the Allies the
option of spawning outside the house.

To get into the house, Axis must either dynamite the main
entrance (non-repairable) or satchel either of the stairwell
doors (repairable).

Version 1.4.0
February, 2009

Fixed map exploit which allowed
docs to be taken from closed

safe..

2bit.PythonOnline.co.uk

http://www.pythononline.co.uk/et/[01.04.2009 23:31:55]

The Key must be taken from the ground floor dining room to
the safe in the top floor study. To get into the study either of
its doors must have been destroyed (one by dyna, one by
satchel, both non-repairable).

On delivering the Key to the safe, the safe door opens and the
Plans can be stolen. They must be taken to the Command
Post in the grounds, and the Command Post built to secure an
Axis victory.

Although all of the windows visible in picture 3 can be broken,
getting out of the house with the Plans is a little trickier than
it seems, as the broken windows are too narrow to jump
through.

In this map Axis Cov Ops can set booby traps at the AA gun
and AA gun controls in an effort to safeguard the paratroop
attack from interruption. The booby traps are detonated if an
unwary allied soldier touches the faint translucent white bar
that reveals their presence. Allied Cov Ops can defuse the
booby traps.

TankBuster

Spring 1944, Italy. The Allies are finally advancing at the
Gustav Line when an S.O.E. Intelligence report reveals a
hidden reserve of Axis armour near Monte Cassino.

The Allies must breach the depot heavy defences and destroy
all the tanks stockpiled there before they can be used in an
Axis counter offensive.

Description The Allies must escort a truck laden with a massive
bomb to the re-inforced main gate of the Axis tank depot. The
bomb is detonated when the Allied Command Post is built.

Once access has been obtained to the interior of the depot,
the Allies must assault the tank garage and destroy the 8
jagdpanther tanks inside. Tanks destroyed cannot be repaired.

Version 2.0.0
9th May, 2007

Extra route to the station, wider
tunnels, mines now permitted in
tunnels, timelimit reduced to 25

mins

Tiger!

Axis infantry must support their Tiger tank as it tries to
destroy an allied truck convoy.

Allied infantry must assist the convoy in escaping through the
town.

This map features a Tiger tank which does not need player
escort - it independently hunts the allied trucks.

Allies send false radio signals and damage the axis
communication system in an effort to lead the Tiger away from
its prey.

Axis can take fuel cans to dips in the road on the convoy
route, to create firewalls that hold up the truck movement -
giving the Tiger the opportunity to catch and destroy the
trucks.

Version 1.1.0
16th August, 2006

110 Factory

Allied raiders must get ashore from their stolen U-boat, storm
the Me 110 factory and grab the secret radar components
being fitted to aircraft on the production line.

The Allies start inside the U-boat and must assault the forward

Version 2.0.0
10th June, 2007

Extra cover, indoors and outdoors.

High level gantries inside the

2bit.PythonOnline.co.uk

http://www.pythononline.co.uk/et/[01.04.2009 23:31:55]

bunker using high-speed dinghies and weather balloons.
Destroying the main entrance to the airstrip will give the Allies
access to the Me110 factory and the radar components within.

Allies can enter the factory via the north doors or the side
entrance and will need to fight their way along the production
line to the south end where the radar components are kept.

The radar components must be brought to the American
halftrack outside the factory for an allied victory.

factory give another route to the
radar parts.

Removed balloon rockets, and
tidied some textures.

Damaged Me110 engines cause
more harm when they explode.

2tanks

Both teams have the same objective:

Get your tank to the Fuel Dump before the enemy gets
his there!

If the time limit expires the winning team is the one which
has made the most progress with their tank.

Version 1.7.1
12th October, 2005

Fuel is no longer needed

6flags

For either team to win:

Capture both base flags and hold them for 2 minutes,
or...
Control all 6 flags

If the time limit expires the winning team is the one which
controls the most flags.

Version 1.1.0
7th July, 2005

Ludendorff Bridge

1945, the famous bridge at Remagen over the Rhine.

The Axis commander has been given orders to blow the bridge
- but not too soon (to allow retreating soldiers to escape) and
not too late (to prevent pursuing allies crossing the Rhine).

This map has several unusual features

Version 1.1.0
24th January, 2006

Extra barricades provided at the
towers to prevent enemy soldiers
from flooding into the spawn and

spawnkilling

Breakout

1944, France, soon after D-Day. A company of Allied soldiers
are trapped by superior Axis forces near a french village. They
must salvage a tank from the depot, force their way through
the village and escape along the railway track.

This is a compact map, with the action focussed around the
railway bridge, but the environment is very open allowing
plenty of choice and scope for tactics. All the buildings can be
entered.

Version 3.7.1
18th June, 2007

Additional route from allied spawn
to the tank garage - helps if Axis
have infiltrated and are camping

the tank in the garage.

Allied spawn front window made
bulletproof and ladder into spawn

removed - Axis unable now to
enter allied spawn.

Assault ramp given additional
ladder, quickens access to the

bridge.

Ammo / Health cabinets removed
from Allied Hut spawn - no reason

now for Axis to enter hut.

Ammo / Health cabinets moved
from Axis bank to adjacent

2bit.PythonOnline.co.uk

http://www.pythononline.co.uk/et/[01.04.2009 23:31:55]

terraced house - more accessible
to both teams.

Additional windows added to Axis
bank.

Additional opening added to
Church tower.

Halftrack moved forward a little,
giving more cover.

Additional cover provided on
bridge and at forward Allied

window, which has had an MG42
added.

Some texture tidying and terrain
tweaking.

Map time limit reduced by 1
minute to 24 minutes.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial01.htm[01.04.2009 23:31:56]

ET Mapping Tutorial
Lesson 1

Topics

Getting Started

Setup

What is Radiant?

Common folders and associated files

Configuring Radiant

The Radiant display

Back to main menu

Setup [Top]

Download and install GtkRadiant version 1.4 (now available from my server). 1.4 is not the latest version, but I
prefer it at this time.

It is best to have a clean install of ET separate to the one you play on, for making and testing maps.

However I haven't done this (I was nervous that installing ET twice might make a mess in the registry) so I use my
usual ET environment. There is a penalty for using the same environment: before running Radiant I have to drag all
of the non-core PK3 files out of etmain and into a temp folder. When I'm finished I drag them all back again. This is
because Radiant will otherwise include elements from the other PK3s into the map I am creating, which will cause all
sorts of display problems when distributed.

If you don't want a second install and intend to use your existing ET environment then for now you won't have to
remove any PK3 files - this basic lesson will be unaffected by the presence of additional PK3 files. But if you
continue with mapping as a hobby you will need to do what I do. See next for the PK3s you can leave in the \etmain
folder.

The PK3s I leave in \etmain are:

common.pk3
etmapcycle.pk3
mp_bin.pk3
pak0.pk3
pak1.pk3
pak2.pk3
All the 1KB campaign PK3 files

Everything else should be moved into a temporary folder while you do your mapping/testing - drag them back before
playing ET online again. At the later stages of mapping, ie once you don't start using any further new textures, you
will be able to leave the other PK3s in place while you map.

http://www.pythononline.co.uk/et/gtkradiant/gtkradiant_1.4.zip

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial01.htm[01.04.2009 23:31:56]

Create these folders within etmain:

levelshots
maps
scripts
sound
textures

Create these folders within your new sound folder:

maps
scripts

The value "<yourmap>" will be used in this tutorial to represent the name of your map.

What is Radiant and what does it do? [Top]

Radiant is a map editor which allows you to create the physical geography of your map. You'll be able to create
furniture, buildings and terrain in 2D and 3D, and explore and view your creation in 3D without actually running ET.
When you save your creation Radiant creates a text file called "<yourmap>.map" in the maps folder. Later on you'll
probably edit this file by hand, but don't do this for now.

Radiant also provides a way of compiling your map into the format required by ET to interpret and play it. The
compiler will produce a file called "<yourmap>.bsp", also in the maps folder.

Common folders and associated files [Top]

Maps are stored in the etmain\maps folder and have a .map suffix.

The <yourmap>.map file is compiled to produce a <yourmap>.bsp file, also placed in the \maps folder. Most of the
other files that make up your map package contain text and can be created and edited using Wordpad.

When you are making a map, settle on its name early, it becomes more and more tiresome to change it the
further you have progressed.

The commonly used folders and files within etmain are:

levelshots command map (<yourmap>_cc.tga) and map loading photo (<yourmap>.tga)

maps map object (<yourmap>.bsp)

 the script that powers your map (<yourmap>.script)

 objective descriptions for the limbo views (<yourmap>.objdata)

scripts map description shown while the map loads (<yourmap>.arena)

special information regarding the textures in your map (<yourmap>.shader and
<yourmap>_levelshots.shader)

sound/maps ambient sound effect placement (<yourmap>.sps)

sound/scripts speech, like "They've stolen the tank!" (<yourmap>.sounds)

sound/<yourmap> If you create bespoke sounds (WAV files of a particular format)

textures/<yourmap> If you create bespoke textures (TGA and JPG files of particular dimensions)

Configuring Radiant [Top]

Run Radiant and identify your ET installation folder to the program.

Press P to bring up program preferences.

Select the following tabs and ensure the suggested settings are applied:

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial01.htm[01.04.2009 23:31:56]

Game Settings Select ET as the default game

Tick Auto load selected game

2D display/rendering Tick first 2 boxes

3D view Tick boxes 1 4 and 5, and 3 if you want inverted mouse

Editing Tick first 3 boxes

 Undo levels = 30

Startup/autosave Tick boxes 2 and 4, set autosave every 5

BSP monitoring Tick boxes 1, 2 and 5

Click OK

The Radiant display [Top]

Adjust your Radiant windows so that they have roughly the same dimensions as shown below.

Maximize the radiant window if you haven't, you're going to need all the screen space you can get.

The 2D window Overhead and two side views available, view from X Y or Z dimension. Use ctrl+tab to cycle thru
the views. Use mouse wheel to zoom in/out.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial01.htm[01.04.2009 23:31:56]

The 3D window Free movement around your creation in 3D. Right click in 3D window to enable free movement.
Move mouse to look around and arrow keys to move. Right click to quit free movement.

Texture
window

The textures used so far in your creation, plus any others you have selected ready to choose from.
Click on a texture to see its name shown bottom right.

Output window The log of what loads when you open a map or load up textures. Also the log of your compiler
activity.

Toolbar This looks intimidating, but happily you only actually use a very few of the buttons in practice. In
the picture below I have coloured yellow the buttons I use - I don't use the others at all. Make
sure the cubic clipping (indicated in the pic) is turned off, or you won't see all of your map in the
3D window.

Next lesson

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial02.htm[01.04.2009 23:31:58]

ET Mapping Tutorial
Lesson 2

Topics

Making your first brushes

The building blocks of a map

Creating a brush

Moving a brush

Resizing a brush

Applying texture to a brush

Back to main menu

The building blocks of a map [Top]

Imagine making something using lego bricks - the lego bricks of mapping are called Brushes. By putting brushes together you can
make terrain, buildings and all the things inside them. Given enough time, and brushes, you can create a whole enviroment in which
the players can run around shooting each other.

But unlike lego bricks where you are limited to the number, shape and colour of the bricks in your lego set, in Radiant you can create
as many bricks, with whatever size, shape and colours as you want.

Creating a brush [Top]

Brushes are created in the 2D window.

To create a brush click and drag in the 2D window. A newly created brush is automatically selected, so it shows in a dashed red
outline. To deselect your selection, press ESC. To select a brush, press shift+click. You can keep adding to a selection by selecting
additional brushes. You can delete a selection by pressing Backspace.

You can see your brush in the 3D window - move the 3D view around until you can see your brush nice and centrally (right click in
the 3D window and use the mouse/arrow keys). It will be a blue/black check (when not selected) with "Shader not found" written on
it. We'll sort out some proper textures later.

The size of the brush you create is up to you, but its edges are always aligned to the
grid. It is very important to use the right grid scale when creating brushes. You can
specify the grid size by using the keys 1 to 9. Use 8-9 for large scale creation; use 5-7

for medium; use 3-4 for small. Use 1-2 only when you really need to get down to the tiny
level. By default Radiant starts up with a grid size of 4, which is quite small. If you make large
walls etc using a small grid scale, you will find it very hard to get the major structures to line up
as you put walls together.

So use the largest grid scale you can for your large scale building blocks. It will be painful
later on if you don't!

It doesn't matter for this first build-a-room tutorial, but it certainly will when your development
projects are bigger.

Quick mention of scale: the grid unit measurement equates more or less to 1 inch in the real
world. So I assume a player is 72 units high and make ordinary doors 84 units high to give
about a foot clearance.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial02.htm[01.04.2009 23:31:58]

Moving a brush [Top]

Brushes can be moved in the 2D or 3D window. The 2D allows precise movement in any axis, while the 3D gives you a more intuitive
feel for placing something just where you want it. Ensure the brush to be moved is selected. You can move multiple brushes if they
are all selected.

To move a brush in the 2D window, put the cursor within the brush outline and click/drag. You can move in any axis by first
changing the 2D view (cycle through the view by ctrl+tab). Generally if you have used ctrl+tab, make sure you end up in the
overhead view (the blue Z will be large and in a box).

To move a brush in the 3D window, put the cursor within the brush and click/drag. The axes you can move it in will depend on your
viewpoint and in which direction you are looking.

Have a go at moving the brush in each of the 3 dimensions. When you're done, leave the brush roughly around the 0,0,0 co-
ordinate, ie where the XYZ axes are shown on the grid.

Resizing a brush [Top]

Brushes can be resized in the 2D or 3D window. The 2D allows precise movement in any axis, while the 3D is best used only when
the axis for change is clearly seen and controlled via the mouse, otherwise you are likely to drag the brush into the wrong size in an
unintended axis. 2D is clearest. Ensure the brush to be resized is selected. You can resize multiple brushes if they are all selected
and you want to resize them in the same dimension.

To resize a brush in the 2D window, put the cursor just outside the edge of the brush and click/drag. When you drag you resize in
the direction you drag in - drag away to make larger, drag inward to make smaller.

Have a go at resizing the brush in each of the 3 dimensions. When you're done, leave the brush as shown in these pictures (a flat
square). On subsequent views of the map you may need to reverse a little in the 3D window in order to see the square. This is
because the camera will start at the origin (0,0,0) and will be looking at the inside.

Overhead view Side view

Applying texture to a brush [Top]

Textures - what's that all about then?

A texture is the name given to the image applied to the face of a brush.

A brush typically has 6 faces, all of which will have a texture applied. At the simplest level a texture on a face will be a JPG or TGA
file of anything from a single colour up to an image of the Mona Lisa. Some special textures are used for the faces that don't need to
be drawn, for example where two faces are flush against each other, or a face faces away from any player and will never be seen
(and so need not have a visible texture applied to it).

One special texture for this purpose is called Caulk. Faces with caulk on them are not drawn, and so must never be somewhere that
a player could look at it. You've probably played a map where a caulked face is accidentally visible, and you get a weird hall of
mirrors effect while you look at it. So you must ensure all caulked faces cannot be seen.

In making a map you should be trying to achieve your design aims using the least number of brushes and the least number
of visible faces as possible. One way to achieve the latter is to create your brushes initially entirely from the caulk texture. Then
you "paint" the visible faces with the required texture, safe in the knowledge that all the other faces are caulked.

For example, say you created a brush to be used as floor in a room. You decide to make the whole brush a wood texture and you

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial02.htm[01.04.2009 23:31:58]

slot the brush into place. You forget to later caulk the bits you can no longer see, so you end up with 5 other faces that the engine
must consider when deciding what to draw, when if they had all been caulk it would not present this overhead. It may seem like
small fry, but a map like 2tanks has 8,000 brushes, and so about 48,000 faces, which translates to around 96,000 triangles to be
considered and possibly drawn. As you want to try to keep the maximum number of triangles drawn to under perhaps 40,000 you
need to ensure you use caulk wherever possible.

So let's start correctly with the flat square we've created. We're going to make that the floor. We caulk an entire brush by selecting

the brush and clicking the Caulk button.

Textures are applied in the 3D window. Point at the top face of the flat square and press ctrl+shift+click. (To cancel the face
selection, press ESC. You can select multiple faces by pointing at more faces one at a time and ctrl+shift+click them into the
selection. You can also deselect a selected face in the same way.)

Now we need to tell Radiant what texture to apply.

At this stage it is unimportant that your \etmain folder contains extra PK3 files, like custom maps. But as you get deeper
into the mapping it becomes important that your \etmain folder doe not have them. Radiant will show you the textures in
those PK3s as available for you to choose. And you will not realize that the town you have lovingly created uses 25 textures

scattered across lots of other PK3s, and because they won't be in your PK3 when you proudly distribute your new map, everyone
else will see the ugly yellow/black squares texture all over the place - oops :(

Click the "textures" menu item. You can now choose to see the textures available under the various folder names. It's a bit of trial
and error here as you go looking for the texture you'd like. For now choose Wood. All the textures in the folder will now show in
your textures window. Don't worry about those that show as red/black squares.

Click on one you like; I am using wood_m05a_usata.

Ok, we've created a floor!

Next lesson

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial03.htm[01.04.2009 23:32:01]

ET Mapping Tutorial
Lesson 3

Topics

Making your first map

Duplicating and rotating brushes

Placing the player start points

Defining the world co-ordinates

Compiling the map

Testing the map

Back to main menu

Duplicating and rotating brushes [Top]

Ok we have a floor, let's add a wall.

In the 2D view make sure we have the top down view, and draw a rectangle next to one side of the floor.
Don't worry about whatever texture gets used at the moment.

Press ctrl+tab twice so we are looking down the length of the (currently very short) wall.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial03.htm[01.04.2009 23:32:01]

Lift it so that the bottom edge of the wall touches the top edge of the floor. (Click inside the selected area
and drag up).

Make the wall higher by putting the cursor above the selected area and dragging upwards.

Ok we have a serviceable wall. Now caulk it. and press ESC to deselect the brush.

As we are going to see only the inside of the room, we only need to texture the inner wall.

I am going to use a drab stone effect: click Textures, Town, Town Wall. We get the town wall textures
shown.

In the 3D window, select the inner wall face (ctrl+shift+click) and click on texture town_c61a and press ESC
to deselect the face.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial03.htm[01.04.2009 23:32:01]

Now make sure the 2D is topdown, and select the wall brush (shift+click).

To duplicate a selection: press SPACE BAR.

We want to rotate the new wall 90 degrees around the Z axis. Press the button shown, to do this.

In the 2D window, drag the newly rotated wall against the right edge of the floor.

Duplicate the new wall, rotate 90 degrees again, and drag it to the bottom edge of the floor.

Duplicate the new wall, rotate 90 degrees again, and drag it to the left edge of the floor.

Press ESC to deselect.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial03.htm[01.04.2009 23:32:01]

Now we just need a ceiling.

Be aware that in the 2D view when you try to select a brush, Radiant will select the uppermost
brush you click on, if there is more than one under your cursor. This can be misleading, as you can
believe you have selected the floor when actually you have selected the ceiling. Another method of

selecting is to repeatedly use shift+alt+click, which will drill down through each brush under your cursor,
selecting one after the other.

Select the floor, press ctrl+tab to get a side 2D view, and duplicate the floor. Move it to the top of the walls,
then caulk it.

Deselect it. Move your 3D viewpoint inside the room and look at the ceiling face - select it with
crtl+shift+click. We'll give it a sky effect. Sky textures provide light, so we won't need to put explicit light
sources in the room.

Click Textures/Fueldump and pick the FuelDumpSky texture.

Deselect the face - you have made a small room with a sky ceiling.

We will put the player inside the room. He will only be able to see the inside of the room. The sky
is actually a ceiling. Everything outside the room is in the volume space called void. You must
ensure when making a map that the player could never trace a path to the void. That is, the 3D

space that encloses the players must be airtight, with no gaps that lead to the void, even if a player could
never see it. If you do, your map compile will fail with a "Map is leaked" error msg.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial03.htm[01.04.2009 23:32:01]

Placing the player start points [Top]

You need to include a minimum of 6 particular entities before a map can function. An entity is a game
component other than an ordinary brush, but you can convert brushes into special purpose entities which
you'll see later on.

To save the time involved in inserting them, download (right-click) this players.zip file which has them
already defined. Extract the players.map inside and put it into your \maps folder.

To include the contents of that file into your map, click File/Import and select "players.map". The 6 entities
arrive in your map, already selected.

Deselect them, then select each in turn and move them inside the room. Do not have any part of an entity
sticking into a wall, floor or ceiling, as if you do the map compile will fail with the "Map is leaked" error.

This is a little cramped with this tiny example room; with a large map there is plenty of space :)

The entities you have just placed are:

http://www.pythononline.co.uk/et/tutorial/players.zip

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial03.htm[01.04.2009 23:32:01]

Blue box
Allied player spawn point - you need 32 of these per Allied spawn location. One
will do for testing.

Red box
Axis player spawn point - you need 32 of these per Axis spawn location. One will
do for testing.

Yellow box near the
blue box

The clickable flag for the allies spawn point shown on the command map - one
per spawn location

Yellow box near the red
box

The clickable flag for the axis spawn point shown on the command map - one per
spawn location

Large mauve box Viewpoint within map until player selects a team

Small mauve box The entity that connects to your script - you need exactly one of these in a map

Defining the world co-ordinates [Top]

You need to tell ET how big your map is now, so that it can position the icons on the command map in the
right place.

Select any ordinary brush, like the ceiling brush. Don't select an entity such as a player spawn point at this
time, as to access the worldspawn values you have to have an ordinary brush selected.

Press N. This brings up the Entities window.

You'll see the worldspawn entity. You would see this for any regular brush you had selected, it's just a way
to set worldspawn values which tell ET some basic map stats. Enter "mapcoordsmins" as a Key, and "0 128"
as the Value and press return. This is the top left co-ordinate of your map.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial03.htm[01.04.2009 23:32:01]

Then enter "mapcoordsmaxs" as a Key, and "128 0" as the Value and press return. This is the bottom right.
The mins and maxs must define a square, regardless of the actual shape of your map.

Close the entity window and press ESC to deselect the brush.

Compiling the map [Top]

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial03.htm[01.04.2009 23:32:01]

It's about time you saved the map to disk. Do a file save - I am using the name "tutorial" for this map
example. Ensure the file is saved into your \maps folder.

Save your work often. It's very painful to have to redo a lot of creative work if Radiant crashes
(which it might) or you have a power cut. I also save my work after a fair amount of work to a copy
of the map, eg tutorial_051124a.map, tutorial_051124b.map, etc. Sometimes an error might creep

in and you'll need to recover to a map file a few versions earlier.

Click BSP menu item and pick the longest compile option, the one that starts Simulate old style.

3 DOS windows will open one after the other, and you will see a mirror of their output whizz past in the
Radiant output window.

When the compiles finish the last lines will say Disconnecting and Connection closed.

If you haven't made an error and your compile worked, you now have a tutorial.bsp file created in the \maps
folder.

Testing the map [Top]

You will need to add a couple of parameters to the startup for ET. Add the text "+set g_gametype 2 +set
sv_pure 0" to the target string. If you are copying from this web page, paste the text into a flat .txt file then
copy and paste into your shortcut from there. Otherwise you may paste some non-printable chars which will
stop them from working within your shortcut. The symptom for that would be ET being unable to find your
map when you try to test it, when you know it is there.

Run ET, and when the game comes up press ESC and go into the console (tilde key). Type "\devmap
tutorial" - if you didn't use tutorial as the map name, use your map name in place of "tutorial".

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial03.htm[01.04.2009 23:32:01]

Revel in being able to run around in your own (very tiny) map! Don't worry about the command map, it
will only be a large black area edged in orange for now.

Back to the main menu

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial04.htm[01.04.2009 23:32:03]

ET Mapping Tutorial
Lesson 4

Topics

Creating an environment

Making a large volume

Hull caulking

Snowy ground

Back to main menu

Making a large volume [Top]

By managing to achieve a fully workable, albeit tiny, map in the previous lesson, you have actually got over a significant hurdle.
Much of what follows will be easy to assimilate now that you have acquired the knowledge to get the guts of a map working.

Our first room was tiny. We will expand it to something rather larger, convert it into an "outside" environment to contain some
buildings, and then make a building to put in it. At the end of this second tutorial you'll be able to run around inside and outside a
building that contains a few rooms.

Run Radiant if you haven't already.

Open the tutorial.map.

You may have spotted on the Preferences tabs that you can get Radiant to open the last map you were working on. Don't
do it. You can mangle your map so that it causes Radiant to crash on opening it, and if it's set to open it on startup it
can get confusing and tiresome trying to sort it out.

You will notice that the textures window shows by default all the textures used in your map. As you get more and more textures
in your map, that list will get longer. This brings a useful editor feature into use: Click Textures/Textures Window Scale and select
25%. That way you can see more textures more easily. There will be times though that you can't easily read the texture names
because the text is overlapped with the next texture. Set the scale to 100% or 200% to overcome that. In other words, set the
scale to whatever you are comfortable with and that meets your needs.

Let's make this tiny room into a large outdoor container for a building we will then create inside it.

It might be quicker to start afresh with making a large cubic space - but we will instead transform our tiny room into the large
volume because it demonstrates a number of handy techniques, including hiding, revealing and deleting brushes, plus
manipulating multiple brushes simultaneously.

In the 2D window, top down view, shift+alt+click on the ceiling of your room, twice. This will end up selecting the floor (yes!) as
you will easily verify by either pressing ctrl+tab or looking in the 3D view.

Still in the overhead 2D view, shift+click on the ceiling area again. This will add the ceiling to your selection set, ie you now have
the ceiling and floor selected.

Press 8 to get a nice big grid scale.

In the 2D view, click outside the selected area in the upper part of the window, and drag the selection larger in that direction, until
the selection reaches the 1024 Y-axis mark.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial04.htm[01.04.2009 23:32:03]

Now click in the 2D window to the right of the selection and drag it to the right, making the selection a square of dimension
1024*1024.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial04.htm[01.04.2009 23:32:03]

Deselect the brushes. Now we want to stretch the walls to match. Put the cursor over the right hand wall in the 2D window and
press shift+alt+click twice. The first click will select the ceiling, but the second will select the wall that we want.

Then shift+click the left hand wall, so now we have both side walls selected. Put the cursor above and between them and drag
upwards until they are 1024 long.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial04.htm[01.04.2009 23:32:03]

Press ESC. We want to move that right hand wall over to the far right, but the ceiling is in the way and the shift+alt+click is a
little tiresome, so we'll employ another technique to make it easier.

Select the ceiling. Press H to hide the selection. Now we can get at the walls without always having to drill down through the
ceiling.

Select the right hand wall. Put the cursor within it in the 2D window and move it over to the far right.

Press ESC - select the remaining 2 short walls and delete them by pressing BACKSPACE. (If you accidentally select say the
floor when trying to select a wall, just repeat the click and the wrongly selected brush will get deselected again.)

Now select the 2 big walls - the quickest way here is probably to click on them directly in the 3D window.

Duplicate them by pressing the Space Bar, then rotate them through 90 degrees by pressing the key shown in the picture:

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial04.htm[01.04.2009 23:32:03]

Put your cursor within one of the selected brushes in the 2D window, and drag the walls into place to complete the square around
the floor.

Press ESC to deselect and finally press shift+H to reveal all hidden brushes (ie the ceiling).

Ok we have a wide area now, but the sky is pressing down a bit, so we need to give ourselves some more headroom.

Select the ceiling brush. Press ctrl+tab to get a side view in the 2D window. Move the ceiling up a couple of grid lines.

Press ESC. Select all 4 walls (easiest by shift+clicking them in the 3D window).

Return to the 2D window and put the cursor above the walls, then drag them up to meet the ceiling.

Press ESC. We've now made ourselves a larger volume, and we're going to make it represent the outdoors.

Now is as good a time as any to set the new worldspawn values. Select any normal brush and press N.

Click on the "mapcoordsmaxs" line in the table, and then replace "128 0" in the Value box with "1024 0". Press return.

Click on the "mapcoordsmins" line in the table, and then replace "0 128" in the Value box with "0 1024". Press return. Press ESC.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial04.htm[01.04.2009 23:32:03]

Hull caulking [Top]

This next bit is not strictly necessary, but it will aid you when your map grows larger and more complicated. Because you will have
a lot of caulked brushes in your 3D view, it can be confusing trying to spot what are supposed to be the outer boxes that contain
everything. There is another purpose which I will cover later on.

So we will apply another texture to the walls of our resized box, to reflect its role as the container of the play environment within
it. It will also demonstrate one of the most usual ways to select multiple brushes.

In the 2D view, make sure you have the top down view, and create a brush that envelopes the entire cubic creation made so far.
Don't worry about what texture it is nor how high the brush happens to be (as seen in the 3D window).

Somewhere in the 2D window, doesn't matter where, right click. Choose Select/Select Complete Tall. This will select all brushes
that are completely within the 2D box you've just drawn, even if they happen to extend beyond it, upwards/downwards, in the 3D
view. It also deletes the brush we had created because it was created to define the set of brushes we wanted to select.

 Now we want to make the Hull Caulk texture available to us for picking. So click the Textures menu item, then Common. You'll
see lots of chequered multi-coloured squares in your textures window. You might want to set the texture scale to 50% or 100%
to make it clearer (Textures/Texture Window Scale). You might also want to resize the textures window for a minute to help you
see what you've got.

Find the Yellow/Green box labelled Hull Caulk and click it. Then press ESC and your box will now look like this:

Snowy ground [Top]

In the 3D view, go inside the box - we need to restore the interior textures.

Shift+ctrl+click the ceiling. Click Textures/skies/skies_sd (note you want the skies that has a subordinate skies_sd menu) and
click the sd_siwasky texture in the textures window. The ceiling will now have red/black check - don't worry about it.

Shift+ctrl+click the floor. Click Textures/fueldump and click the snowfloor texture (don't worry about the Hong Phong text).

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial04.htm[01.04.2009 23:32:03]

Shift+ctrl+click a wall. Right-click so you can rotate the view in the 3D window, and shift+alt+ctrl+click the other 3 walls. Then
right-click to get your arrow cursor back.

Click Textures/battery_wall and click wall03_mid texture. Press ESC to deselect the faces.

Save your work and compile the map.

Run ET to check how your work is looking so far - with luck it looks like this:

Run around a bit. Notice that you are making snowy footstep sounds? That's pretty neat, how does the program know that a
messy white/grey texture painted on the ground should sound like snow? The answer is "shaders", which we'll cover later on.

Next lesson

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial05a.htm[01.04.2009 23:32:06]

ET Mapping Tutorial
Lesson 5a

Topics

Making a building outline in your environment

Making an L-shaped outline

Back to main menu

Making an L-shaped outline [Top]

I have chosen an L-shape structure to demonstrate the best practices for creating joined walls, with the aim
of using the least number of brushes and visible faces.

I am now assuming you know how to create, caulk, duplicate, move and resize brushes - please refer to
earlier lessons for a refresher if you don't remember.

Run Radiant. Open the tutorial map. Leave the grid size at the default 4 for the moment. Press ctrl+tab to
see the side 2D view. We are going to move the environment down a little, in order to make the upper face
of the floor run along the 0 (zero) Z co-ordinate. This will make it easier when we are creating new brushes,
because they will sit just on the ground by default, rather than just through it.

Draw a box around the whole environment (mousewheel zoom out to see it all if needed), and either right-
click and Select/Select Complete Tall or click the indicated button, whichever you feel comes more naturally.
If you can't see everything in the 2D window you can scroll the view by right-clicking it and dragging
around.

You should see this:

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial05a.htm[01.04.2009 23:32:06]

Zoom in so you can see the grid, and move the whole lot down one grid notch.

Press ESC. Press ctrl+tab twice to get the overhead view, and zoom out so you can see the whole area
again. Set the grid size to 8.

Draw a brush as shown below. Cycle thru ctrl+tab to confirm the brush is sitting on the floor level and is
128 high. If it isn't (because Radiant remembers the last brush manipulation you were doing) adjust it so
that it is.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial05a.htm[01.04.2009 23:32:06]

Caulk it. Change the grid scale to 5, and reduce the width of the wall by putting the cursor under the
selection and dragging up. You may want to zoom in a little to clarify the grid lines for yourself.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial05a.htm[01.04.2009 23:32:06]

Press ESC. In 3D view, select the face that will be the inner wall - it's the south facing wall that faces back
to where the player start points are.

Apply Textures/chateau wood_test texture, or some other wall texture if you like. Press ESC.

In 3D view take yourself around to the outside face and apply an exterior texture. I'm using
Textures/town/town_wall church_c01dm. Press ESC again to deselect the face.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial05a.htm[01.04.2009 23:32:06]

Now select the wall brush and duplicate it, then rotate the new wall by 90 degrees, in the usual way...

 ...for making a wall at right-angles to the previous
wall, and position it as shown.

What you have here is the wrong way to make adjacent walls. We will correct this is a minute, but I'm
doing this to show you why you should avoid this construct when possible (sometimes it will be unavoidable).

With walls butted up like this, the face A will need an outer wall texture applied (making 3 outer faces so

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial05a.htm[01.04.2009 23:32:06]

far), and the face B will overlap some of the inner texture applied to the other brush, which is wasteful
because it means a face is textured for its full length yet part of it cannot be seen.

There is a more efficient way to arrange the two walls:

Move the second wall up one notch so that the brushes overlap.

Press E to bring up the edges markers.

 The little blue dots mark the edge points we can manipulate.

Click on the left blue dot and drag it one notch down.

Press shift+alt+click on the other wall brush to select it, and press E to show its edge points.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial05a.htm[01.04.2009 23:32:06]

Click on the bottom blue dot and drag it left one notch. Press ESC twice to turn off edge point display and
deselect the brush.

You can see we have made a nice join now, that means we only need 2 outer faces and there is no wasted
display of inner faces because there is nothing partially overlapping a textured face.

We're going to this trouble, when we hadn't for the tiny room, because the outer faces are going to be visible
so it isn't ok to leave chunky gaps on the outside faces - it's all got to join and seal so that people outside
can't see ugly joins or see through gaps, and vice versa.

We'll create more walls next to complete the building outline.

Select the second brush and angle its bottom end using the edge points (you may want to first select the
main area ceiling and hide (H) it).

Duplicate the brush, rotate it 90 degrees and attach it to the second brush:

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial05a.htm[01.04.2009 23:32:06]

Reduce the length of the selected brush.

Duplicate it, rotate 90 degrees and move into place.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial05a.htm[01.04.2009 23:32:06]

Duplicate it, rotate 90 degrees 3 times and move into place.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial05a.htm[01.04.2009 23:32:06]

Duplicate it, rotate 90 degrees and move into place.

Press ESC. Select the top brush, press E and drag the bottom blue dot to the right to make the join 45
degrees.

Press ESC. Select the horizontal brush where the join isn't right, press E and drag the top blue dot to the
right 2 notches.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial05a.htm[01.04.2009 23:32:06]

Press ESC. Finally select the lower brush and use the Edge blue dot to drag its inner face up to meet the
other at 45 degrees.

You've made an L-shaped outline with an efficient use of faces. You could compile here if you like and have
a quick run around to see how it looks. When you come back, we'll add a floor, ceiling, some windows you
can smash, a door, and for good measure, an outdoor MG42.

Next lesson

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial06.htm[01.04.2009 23:32:10]

ET Mapping Tutorial
Lesson 6

Topics

Making a door

Making a door frame

Making a door

Back to main menu

Making a door frame [Top]

Run Radiant. Open the tutorial map. Select the environment ceiling and Hide it. Select the roof over the
doorway and Hide it too.

The default 4 grid size is fine this time. Look at the doorway in the overhead view and select one of the
doorway walls. Drag the wall 1 notch sideways to make the door opening a little larger. Do the same with
the opposite wall. Make sure you deselect after each wall adjustment.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial06.htm[01.04.2009 23:32:10]

Then select the wall above the opening and stretch it both ways to meet the receded side walls.

Press ctrl+tab to see the side view, so you can shrink the wall over the door upward a little. We have now
made a space all the way round the doorway to accommodate a door frame.

Press ESC. Select in the 3D view all the wood effect faces in the current door frame, and click the Caulk
texture in the textures window.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial06.htm[01.04.2009 23:32:10]

Press ESC. Now we will create a door frame, by creating brushes in the usual way.

Ctrl+tab until you get the overhead view. Then create a brush in the doorway as shown.

Ctrl+tab.

Move the brush down a couple of notches.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial06.htm[01.04.2009 23:32:10]

Stretch the brush down to the floor.

Zoom in for close up work, and angle the top part of the brush using the Edge tool.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial06.htm[01.04.2009 23:32:10]

Press 3.

Ctrl+tab again, and drag in the lower of the side blue dots one notch, as indicated, for both sides:

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial06.htm[01.04.2009 23:32:10]

After you have dragged the two blue dots, one after the other, you get a nicely bevelled door frame side
piece:

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial06.htm[01.04.2009 23:32:10]

You'll see this clearly in the 3D view. Press ESC, then select the 3 main faces of the new brush, not the tiny
upper one.

Click on the wood_c01 texture in the textures window and press ESC.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial06.htm[01.04.2009 23:32:10]

Get the overhead view via ctrl+tab if needed. Press 4. Select the new brush.

Duplicate it, and click the "x-axis flip" button then move the brush to the opposite wall
edge.

Ctrl+tab. Duplicate the brush. Click the "y-axis rotate" button 3 times and move
the brush into place as shown.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial06.htm[01.04.2009 23:32:10]

Shrink it to size.

Then use the Edge tool to get its edge to line up at 45 degrees.

Press ESC, and select all 3 visible faces of this brush. Press S. Click the up arrow to rotate the textures
through 90 degrees. Click Done. Press ESC.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial06.htm[01.04.2009 23:32:10]

You've made the door frame.

Making a door [Top]

Get the overhead view. Press 3. Create a brush as shown, and caulk it.

Ctrl+tab, and drag the brush into the door opening.

Resize it to fill the doorway. Press ESC. Hide the door frames and walls that surround the door frames, so
we can see our door properly.

Select the 3 door edge faces, and apply the wood_c01 texture. Press ESC. Reselect the top face, press S,
and rotate the texture through 90 degrees. Press ESC.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial06.htm[01.04.2009 23:32:10]

Select both of the main door faces, and click Textures/doors and click the door_c01b texture. The door will
look a muddle; don't worry. There are lots of door textures, but most of them are scattered about, rather
than in the doors folder :(

Press S. Click "Fit". Click Done. Press ESC.

We have our door (non-functioning at the mo). Note that the door texture is mirrored on the reverse face,
which is handy as it will keep the handle/hinges in the right place. Textures are always reversed on opposite
edges.

Now to make the door work.

Get the overhead view, and draw a brush as shown (yes it overlaps). It will define the hinged side.

Get a side view. Adjust the brush to be the same height as the door.

Click Textures/common and click the Origin texture (orange check pattern).

Now select the door, so that it and the origin brush are both selected.

In the 2D window, right click and select "func" then "func_door_rotating".

Press N. Enter "type" as a key and "4" as a value and press return. Close the entities window.

We have an operational door, but there is one more thing we need to do, otherwise the compile will fail.

Press ESC and shift+H to reveal all the hidden brushes.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial06.htm[01.04.2009 23:32:10]

Select the 3 door frame brushes, then in the 2D window right click and select "Make Detail". This is because
entities, such as an origin brush, cannot fall within a structural brush (such as all the walls made so far) but
it's ok to fall within a detail brush (to be explained later).

You're all done. Save the work, compile and test. Don't worry, it isn't always this long-winded. Once you've
made something like a door, you make it into a prefab (explained later) and then you can just plonk copies of
it into place as and when you want.

To select the door entity, use shift+alt+click on any component brush, and the whole assembly gets
selected. To select a component brush of an entity made up of several brushes, just use the regular
shift+click.

Next lesson

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial07.htm[01.04.2009 23:32:12]

ET Mapping Tutorial
Lesson 7

Topics

Making a destructible window

Making an opening for the window

Making a window

Back to main menu

Making an opening for the window [Top]

From this point on I am assuming you know how to create, resize and edit brushes with the clipper tool and
edge tool (in the 2D), and that you know how to select and texture multiple faces (in the 3D). Also that by
default you will apply caulk to any new brush unless directed otherwise.

Run Radiant. Open the tutorial map. Select the environment ceiling and Hide it. Select the roof over where
we will put the window (see the picture below) and Hide it too.

Press 5 for the grid scale. In the 2D, select the wall that we will put a window in.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial07.htm[01.04.2009 23:32:12]

Press X (for the clipper) and click at spots 1 and 2:

Press shift+return (to cut the brush) then shift+click on the smaller chunk to deselect it.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial07.htm[01.04.2009 23:32:12]

The clipper tool remains active, so click at 1 and 2...

...and press shift+return again. Shift+click on the smaller chunk to deselect it.

Ctrl+tab (twice is clearer) to get a side view. Click on 1 and 2...

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial07.htm[01.04.2009 23:32:12]

...and press shift+return again. Shift+click on the smaller chunk to deselect it.

Then click at 1 and 2 as shown below to complete the cutting out.

 If the smaller chunk is not yellow, press ctrl+return to make it yellow.

Press return to eliminate the chunk that forms the window space.

Press ESC twice to turn everything off. (The green lines shown below are indicators I added, explained next.)

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial07.htm[01.04.2009 23:32:12]

So we have the window opening.

Really we should now do one of two things for best performance: either put in a window frame, or cut up the
side walls to prevent textures getting drawn behind an obscuring brush (as indicated by the green lines).

To move along more quickly we'll do the quick and dirty - which is especially ok if the current map area that
the players are in has plenty of FPS slack.

Select all the caulked window ledge faces and give them a wooden or other texture, say like plaster. I'm
using town_c61a which has a texture that doesn't need aligning. If you choose a wooden texture, you'll
probably need to rotate the alignment for 2 of them, like you did in the door frame.

Press ESC.

Making a window [Top]

Ctrl+tab to get the overhead view, then press 3 for the small grid scale. Draw a brush as shown:

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial07.htm[01.04.2009 23:32:12]

Reminder: caulk it.

Ctrl+tab, and move the window brush into place on the ledge, and resize it to fill the whole opening.

Press ESC. Select one of the two visible window faces. Apply Textures/sfx tramglass2.

Press ESC. Then select the window brush, and in the 2D, right-click and select func\func_explosive.

Press N - close the entity window and press N again!

Tick the Useshader box. This means when the window is destroyed, the game engine will make the shards
out of the same texture as the destroyed item. If you don't, the game engine will use a default texture.

Enter "health" as a key and say "10" as the value, then press return. The bigger the health value, the
tougher the glass. You could even use a value of 1 to guarantee the slightest damage will destroy the glass.

Enter "type" as a key and "glass" as the value, then press return.

Close the entities window and press ESC.

Press ctrl+tab twice to get the overhead view. Press 8 to get a big grid scale.

Just for fun, right click on the grid intersection where circled in the picture.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial07.htm[01.04.2009 23:32:12]

Select misc\misc_MG42.

Ctrl+tab to see the side view. Press 4 and drag the red box (which represents a fixed MG42) up until it
stands on the floor.

Press ESC. Save the work, compile it and go break that window soldier!

When testing you often want to restart the map quickly, say so you can rebreak your glass. Bring
up the console and type:
 \map_restart

Next lesson

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial08.htm[01.04.2009 23:32:13]

ET Mapping Tutorial
Lesson 8

Topics

Creating the initial script

Creating the basic script

Back to main menu

Creating the basic script [Top]

Every map comes with a .script file, which is a text file found in the maps folder.

The purpose of the script is to tell the game engine some basic operational details about the map, like what
the respawn times are, and to power the interesting bits of the map, like making a tank move, a balloon fire
rockets, or getting constructible things to go all white/wavy and then turn into the constructed thing.

Here is a .script file for the tutorial - click here - unzip it and put the .script file into your maps (yes, maps)
folder. You'd think it would go in the scripts folder wouldn't you. One of ET's quirks.

Associate the script suffix with Wordpad. Rename it to <yourmap>.script if you are not using the name
"tutorial".

Below is a brief explanation of its contents. Don't worry, it's straightforward.

Scripts contain a number of separate sections, with each section handling a particular aspect of something
that features in the map. A section is given a name, and then its contents are marked out inside a pair of
curly brackets, like these { }. The naming of the sections is up to you, but the names chosen sometimes
have to match the names used in the map - we'll come to that later on.

The first and only section that must appear in the script file, is called "game_manager". It contains
information about the fundamental elements of your map, as you will see below.

The game_manager section must contain a procedure named spawn, which is the procedure executed in a
section when the map starts. Each section can have a spawn procedure if you want something to happen for
it when the game starts, but it isn't mandatory.

For example, the spawn procedure for a tank might make the tank start the game disabled.

Here are the contents of the script file for the tutorial map, followed by explanations. Most of it is obvious.

game_manager

{

http://www.pythononline.co.uk/et/tutorial/tutorialscript.zip

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial08.htm[01.04.2009 23:32:13]

spawn

{

wm_axis_respawntime 10

wm_allied_respawntime 10

wm_set_round_timelimit 30

// Stopwatch mode defending team (0=Axis, 1=Allies)

wm_set_defending_team 0

// Winner on expiration of round timer (0=Axis, 1=Allies, -1=Nobody)

wm_setwinner 0

wait 500

setautospawn "Axis Spawn" 0

setautospawn "Allied Spawn" 1

 }

}

wm_axis_respawntime 10 Sets the Axis respawntime to 10 seconds. This can be changed in the script
later on if wanted, say on reaching a certain objective.

wm_allied_respawntime 10 As above, for Allies.

wm_set_round_timelimit 30 Sets how many minutes the map is to last.

wm_set_defending_team 0 For Stopwatch games, sets the initial defending team. Wherever a team is
referenced in the script, 0 means Axis and 1 means Allied

wm_setwinner 0 If the map timer expires, the winning team is declared to be team 0, ie the
Axis.

wait 500 Wait 500 milliseconds, to allow the other game components to start up, so
that they can be safely referenced

setautospawn "Axis Spawn" 0 Tells the game where the Axis players should spawn by default. In the
tutorial map, the yellow team_wolf_objective box for the Axis team has a
description (visible if you select the box and press N) called "Axis Spawn".
This is what is being referenced in the script.

setautospawn "Allied Spawn" 1 Likewise for the Allies.

T

he handy thing about having at least this much script in place is that it can set the respawntime to 10 secs,
making your testing easier.

 As you will have guessed, lines that have // in them are treated as comments from that point to the end of
the line.

Next lesson

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial09.htm[01.04.2009 23:32:14]

ET Mapping Tutorial
Lesson 9

Topics

Creating the mission text to be shown as the map loads

Making the .arena file

Back to main menu

Making the .arena file [Top]

Every map comes with a .arena file, which is a text file found in the scripts folder.

The main purpose of the contents of the file is to supply the text to display as the map loads.

Here is a .arena file for the tutorial - click here - unzip it and put the .arena file into your scripts folder.

Associate the arena suffix with Wordpad. Rename it to <yourmap>.arena if you are not using the name
"tutorial".

Below is a brief explanation of its contents.
{

map "tutorial"

longname "^2The ^7Tutorial"

type "wolfmp wolfsw"

timelimit 30

axisRespawnTime 10

alliedRespawnTime 10

lmsbriefing "Fight to the death."

briefing "Version 1.0.0**A scratch force of Allied students desperately struggle with the Axis
mapping documents.**They must overcome the defences and emerge
victorious.**^7www.tibetclan.com"

axiswintext "Not used"

alliedwintext "Not used"

http://www.pythononline.co.uk/et/tutorial/tutorialarena.zip

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial09.htm[01.04.2009 23:32:14]

mapposition_x 570

mapposition_y 660

}

map : the map name, "tutorial" in this instance.

longname : the text displayed as the map name. In this example I've stuck the word "The" at the start and
applied some colours in the usual way.

type : wolf multiplayer and stopwatch values.

timelimit, axisRespawnTime and alliedRespawnTime are redundant; enter values that roughly match the real
values in the script, but it doesn't matter.

lmsbriefing : For Last Man Standing. No-one plays it. Forget it.

briefing : The text that appears on the right panel while the map loads, unless overridden by campaign or
server text. "**" means new paragraph. "*" means new line. Colours can be applied in the usual way.

axiswintext "Not used"

alliedwintext "Not used"

mapposition_x and mapposition_y : tell ET where to put the drawing pin on the loading map. When making
your map, keep adjusting these values by 10s and 20s until the pin gets to where you want. So each time
you are about to test, tweak these numbers until you get it right.

Next lesson

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial10.htm[01.04.2009 23:32:15]

TibeT Clan | ClanBar.com

ET Mapping Tutorial
Lesson 10

Topics

Adding ambient sounds

Adding ambient sounds

Back to main menu

Adding ambient sounds [Top]

These are the bird tweets, disturbed gravel, war noises, dripping water, howling wind etc that all help to
make a convincing environment.

They make a big difference so you should always consider what sort of ambient noise might be applicable at
various places in your map.

You're going to need PakScape sooner or later , so you might as well get it now.

Download pakscape : here

It doesn't need installing, just unzipping.

Plonk it in your ET folder or anywhere you keep utilities.

Use Windows Explorer to navigate to the etmain folder. Right click pak0.pk3 and associate PakScape with
the pk3 file type, and open pak0.pk3.

You'll see a windows-style view of the insides of the pk3.

Open the sound folder, and the world folder within it.

Double click on any of the WAVs to marvel in the audio possibilities open to you. It is possible to make your
own WAVs, but using some of these standard ones is a good start.

I will use war.wav for this demo.

Contrary to what you'd expect, ambient sounds are not ordinarily placed in Radiant (they can be, but this
other way is better). You place them while you are wandering around your map in ET!

So, run ET and /devmap <yourmap> - then stay in Spec mode when it starts. If you haven't tested recently,
you will see your map description text as the map loads, and you now have a respawn time of 10 secs,
which is better for testing.

Glide your viewpoint to somewhere high up around the middle of the map, and bring up the console.

http://www.pythononline.co.uk/et/pakscape.zip

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial10.htm[01.04.2009 23:32:15]

Enter \editspeakers to enter speaker editing mode.

Then enter \dumpspeaker to create a speaker in front of you.

Then enter \modifyspeaker to edit the speaker you've highlighted (it will be pink) by looking at it.

(You can use / instead of \ if you prefer.)

Exit the console, and enter these values in the boxes:

Noise sound/world/war.wav the wav to play

Looped on keep playing this sound indefinitely

broadcast global everyone should hear it

range 10000 a good range to make sure everyone is in range

Click OK.

Move your 3D view around so you can see where the speaker actually sits. For a broadcast global speaker
roughly the middle is fine. If you wanted, say radio static, you'd put the speaker near the radio brush and
make the range smaller.

Practice moving the speaker, by looking at it so it goes pink, then going back to the console and entering
\modifyspeaker (just use the up arrow to get back recent console commands) and come back out of the
console. This time drag on the coloured bars sticking out of the speaker and move the speaker to where you
want it. Put this one near the map centre.

Click on OK to end the modifying. Go back to the console and enter \editspeakers to end the editing session.

Join a team and run around a bit to see how the sound comes across - is it too loud/quiet, in the right place,
etc?

When you add speakers to the map in this way, ET creates and modifies a file called <yourmap>.sps which it
puts in the \etmain\sound\maps folder. When the time comes, we would need to include this file in the PK3
you'll build to distribute your creation.

Next lesson

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial11.htm[01.04.2009 23:32:18]

TibeT Clan | ClanBar.com

ET Mapping Tutorial
Lesson 11

Topics

Planting a tree

Introduction to models

Making some ceiling space

Putting a tree model into place

Making a tree prefab

Back to main menu

Introduction to models [Top]

What's a model? It's a predefined object that you can plonk straight into your map, without having to make
or paint any brushes. Just like putting a ready-made MG42 into the map, we can put in any ready-made
models we want, things like trucks, tanks, trees, vases...

For Radiant to see a model to give you the option of picking it, it has to be within your ET folder structure,
rather than just in a PK3. When Radiant installs, it creates the models folder within etmain, and the
mapobjects folder within models. Inside there are a load of folders each of which contain model files, ending
in .MD3.

Models are great ways to include some graphical detail without having to do any work. :)

Apart from a bit. Models are drawn by the game, but do not affect player or missile movement. So if you
put a tree model into place and leave it at that, the players would be able to run clean through it. You'll see
how you can stop that further down in this lesson.

Making some ceiling space [Top]

Trees are tall. In our little space we need to raise the ceiling. This should also prevent the "grenades-
through-the-sky" syndrome. If you find you can still manage to get a grenade through the sky, you could lift
the ceiling higher again until you can't.

Run Radiant and open the map. Ctrl+tab to see the side view. Select the sky brush, and move it down until
it sits on the 256 Z line. We're doing this to get the brush dimensions to fit nicely into a very large grid size.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial11.htm[01.04.2009 23:32:18]

Press ESC. Select the 4 walls, and decrease their height to meet the ceiling.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial11.htm[01.04.2009 23:32:18]

Press 9 for a nice big grid size. Duplicate the four walls. Move them onto the top of the other walls.

Press ESC. Select the sky again, and move it up one notch.

Press ESC. Now select all the inner wall faces of the new high walls we just built, and finally select the sky
face too. You should have 5 faces selected, and the sky one must be the last. Why did we select the sky
face? Because it's a handy way of getting the sky texture visible in the textures window. Click it now and it
will apply sky texture to all the selected faces. Press ESC.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial11.htm[01.04.2009 23:32:18]

Putting a tree model into place [Top]

Get the overhead view. Press 5 to get a reasonable grid scale. Right click where shown here:

Click misc/misc_model and a window will open. Double-click mapobjects then trees_sd, then tree_a.md3.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial11.htm[01.04.2009 23:32:18]

Get a side view, and move the tree down to the ground by click/dragging somewhere within the actual
tree shape, rather than just somewhere within the box it comes in.

Maybe it's a little too big. Press N and enter a key of "modelscale" and a value of "0.8" and press return.

Ok the tree is about the right size, now we must add a "clip" brush, which is a brush that isn't drawn, but will
act as the solid tree trunk to block movement, and also to give a wooden bullet ricochet noise if the clip
brush is hit.

Press ESC. Get the overhead view and draw a brush as shown.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial11.htm[01.04.2009 23:32:18]

Then select Region/Set Tall Brush from the menu at the top of the screen. This restricts what Radiant draws
to whatever is inside the box you drew. The box is deleted as it has fulfillled its task of indicating the area
you are interested in.

Get a side view and draw a brush as shown. I've coloured it yellow so you can see the red dashed outline
against the red model.

Get the next side view, and shrink the brush to about the right size by pressing 4 to get a better grid scale..

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial11.htm[01.04.2009 23:32:18]

Once the brush is about right, but a bit lumpy and straight upright, use the Edge tool and grab the corner
blue dots to make the brush hug the tree trunk up to about the point where you no longer need clipping, ie
up high in the leaves.

Keep using ctrl+tab to check the 2 side views as you refine the clip brush. Use 3 if you want to get the fit
really snug. You can see in the 3D how you are doing.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial11.htm[01.04.2009 23:32:18]

Press E when you are satisfied with it. Then click Textures/common and click on the Clip Weapon Wood
(green/mauve check) texture. Finally right-click in the 2D and select Make Detail. This deselects the brush
too.

Ctrl+tab to get the overhead view. Press 7 to return to a sensible grid scale. Click Region/Off to see the
whole map again. Save your work.

Making a tree prefab [Top]

Happily you won't have to do that for every tree.

Make a folder called "prefabs" in your maps folder.

Select the tree model and its clip, either by clicking them both (fiddly) or by drawing a box around them and

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial11.htm[01.04.2009 23:32:18]

"selecting complete tall".

Click File/Save Selected... then double-click the prefabs folder, give a file name of say "snowy_tree_1" and
save it as a .map file type. Press ESC.

You can save any collection of brushes as a prefab. This is hugely helpful, as it means you can
import prefabs as you need, without having to reinvent every little detail.

To include a prefab into your map, you click File/Import... and navigate to the prefab you want. It will
appear within your map, at the co-ordinates that it was saved at, and already selected ready for you to move
into place. When moving a model/clip like this, be sure to put your cursor within the clip area, or you may
distort the clip by accident.

If you change the modelscale of your tree later on, be sure to change the size of the clip brush too. More on
that later.

To make a little clump of trees it is best to make a few prefabs using different trees and different scales, and
then import a variety so they don't all look the same.

Compile and test to make sure your tree is ok. Notice how the wall and ceiling sky textures are seamlessly
merged by the game engine. Neat. And your tree model casts a plausible shadow. Very neat.

Next lesson

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial12.htm[01.04.2009 23:32:20]

ET Mapping Tutorial
Lesson 12

Topics

Making stuff you can shoot up

Fencing

Back to main menu

Fencing [Top]

Anything you can make out of brushes, you can make destructible. You can make a single brush destructible,
or you can group brushes together as a single destructible entity.

At the simpler level, it is very easy to make things destructible by any and all attacks, from knife up to
artillery. It is more involved to make say a wall destructible only by dynamite.

We're going to start at the simple end and make some fences you can shoot to bits with bullets.

Run Radiant, open the map, and make a fence post by drawing a box as shown.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial12.htm[01.04.2009 23:32:20]

Ctrl+tab so we can control the height of the fence post and ensure it stands on the ground. Caulk it of
course too. Press ESC.

Apply some wood texture to the 5 visible faces.

Select the fence brush, then in 2D, right-click and select Make Detail.

Select it again, and again right-click, but this time choose func/func_explosive. Press N. Close the window
and press N again.

Tick UseShader box. Enter key "health" and value "100" and press return. A bullet does around 15 damage.
Grenades do 200, and panzers do 400.

Enter key "type" and value "wood" and press return. Close entities window.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial12.htm[01.04.2009 23:32:20]

Press 8 and duplicate the fence post, then move it into line as shown below. Duplicate it again to make a
third one in line.

Press 7, and duplicate to make another fence post which we'll do something different with.

Right click in 2D and select Ungroup Entity. This returns the brush to an ordinary thing instead of an
explosive one.

Duplicate the post. Press ESC.

Use grid scale 3 to create the linking fence plank as shown (this time allow wood texture to remain on this -
do not caulk).

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial12.htm[01.04.2009 23:32:20]

Ctrl+tab to see how tall the brush is, and make it fence bar size. Right-click and Make Detail the bar. Select
the brush again.

Then select the upright posts so that you have all 3 brushes selected.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial12.htm[01.04.2009 23:32:20]

Then in 2D, right click and select func/func_explosive. Again Press N. Tick UseShader. Put the cursor on
the word "wood" in the value box and press return. This is a quick way to set the same value as used
earlier. Also put "health" in the key and say "150" in the value and press return. Press ESC.

We now have 3 standalone posts that can be destroyed individually - and a fence that when destroyed, all 3
components go up together.

This is to illustrate that you can make a single explosive entity out of any collection of brushes (but not of
models) and that you mustn't create something that might have its upright posts destroyed, but leave the
crossbar intact floating in the air! This why you'll often notice that crossbars can be destroyed, but their
posts cannot (eg Fueldump near the tank start).

Save, compile and go shoot some planks :)

Next lesson

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial13.htm[01.04.2009 23:32:22]

ET Mapping Tutorial
Lesson 13

Topics

Making barbed wire

Making the basic structure

Making the barbs hurt

Completing the structure

Back to main menu

Making the basic structure [Top]

We're going to make some barbed wire, because it demonstrates a number of new features and techniques
and reinforces some we've touched on before. You'll use these a lot.

Run Radiant, open the map, and select one of the solitary explosive fence posts. Duplicate it, right-click in
the 2D and Ungroup Entity so that it returns to being a normal brush. Drag the brush over to roughly where
shown below. This will be the first post of the barbed wire.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial13.htm[01.04.2009 23:32:22]

Ctrl+tab and make the post a bit higher, say the height of a player start box:

Press 3 and zoom in close. Turn on the clipper tool (X) and click where marked:

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial13.htm[01.04.2009 23:32:22]

If the big chunk is not yellow, press ctrl+return so that it is.

Press return to chop off the small chunk.

Click again as shown, make sure the big part is yellow and press return to chop off the other small chunk.

Press X to turn clipping off.

Ctrl+tab twice to get overhead view, zoom out again, press 8 and duplicate the post. Move it a bit further
away as shown.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial13.htm[01.04.2009 23:32:22]

Press ESC, then 3 to return to a small grid scale. We're going to string some barbed wire between the posts.

Draw a brush as shown. Click Textures\common and choose the NoDraw (pink/mauve check) texture for the
whole brush. As the name suggests, faces with NoDraw texture are not drawn.

Ctrl+tab so you can set the height and position like this (press alt+2 or click View\Filter\Entities to prevent
the display of entities (incl models) so that what you are working on is easier to see. You can filter all sorts
of things out of the display under the Filter menu).

Right click in 2D and Make Detail. Then select the face that is nearest the Axis start box and click
Textures\alpha barb_wire. Then press S, set the width and height boxes to 2 and press Fit. We get the
barbed wire texture compressed a bit to look better on the brush.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial13.htm[01.04.2009 23:32:22]

Ok so we have the barbed wire texture in place. But the barbwire face on the nodraw brush won't stop the
player from running through it. We'll need to put a clip brush in there too.

Select the barbed wire brush and duplicate it.

The common textures should still be available to you in the textures window. Click on the Clip (pink/red
check) texture.

Then drag the clip brush back so it occupies exactly the same space as the barbed wire brush.

The clip brush, like the one for the tree, will not be drawn. But unlike the Clip Weapon Wood, the Clip only
stops player movement; it doesn't stop bullets or projectiles.

Press ESC.

Making the barbs hurt [Top]

Ok so we have barbed wire that players can't run through - now we need to make it hurt those that try :)

Select either the clip or barbed wire brush. Duplicate it and click the Trigger (grey/pale yellow check)
texture. Move the trigger brush to be in the same place as the others.

Press 2 for some fine adjustment, zoom in if needed, and make the trigger brush slightly larger than the
other brushes.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial13.htm[01.04.2009 23:32:22]

Get an overhead view and again expand the trigger brush a little.

It's not enough to make a brush into a trigger brush - you have to then turn it into a trigger entity. Right
click in the 2D and select trigger\trigger_hurt.

Press N (if you don't see tick boxes, close the window and press N again).

Tick Slow - so the hurt gets applied once per second. Don't tick Silent, as we want the player to know it's
hurting :)

Enter "dmg" as a key and say "15" as a value and press return. Close the window.

Press ESC.

If you filtered entities, turn the filter off again now (alt+2), so that you will be able to see the trigger
brush. Otherwise Radiant will filter the entity once you deselect it.

Save your work.

Trigger brushes have many useful purposes, of which hurting players is just one. When a player
enters the volume of the trigger brush, the trigger is activated. It might be to advise the player that
he is near a constructible or a destructible, or that if he waves his pliers he could repair the tank or

that if he presses Use he can pull a lever; or it might cause any scripted event. For example I have a
trigger in the gap between the bank and the houses in Breakout. When a player passes through it, it
triggers the playing of a dog barking WAV file - a handy warning to others that someone is approaching...

Completing the structure [Top]

Press 4. Select the whole new structure and tilt it by clicking "Selection\rotate\arbitrary rotation..." and
entering 30 in the X box. Click OK.

You'll notice that some of the the wooden textures have not tilted - we'll fix that.

Press ESC. Select both upright fence posts, and apply the wooden texture again (we want the wooden
texture on the bottom of the posts this time, and they were caulk before this). Press ESC.

Select the four faces on each fence post that need properly aligning, so you have eight faces selected.

Press S. Change the Rotate Step value from 45 to 15. Then click the Rotate Offset downarrow twice to
apply a 30 degree tilt. If you've done this right, you're fence post textures now line up properly. Press ESC.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial13.htm[01.04.2009 23:32:22]

 Check you have the overhead view. Select the whole structure, and duplicate it. Click the Y-axis Flip button
on the menu bar.

Move the brushes next to the first set.

The wooden textures on the uprights are wonky again. Press ESC. Select the 8 affected faces. Press S.
Enter 60 into the Rotate Offset box and click done. Press ESC.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial13.htm[01.04.2009 23:32:22]

Select the whole structure, and click File\Save Selected..., navigate to your prefabs folder, and save it as
prefab_barb as a map type. Then you can import it as and when wanted into another map.

Press ESC.

Compile and experiment with running into your barbed wire!

Next lesson

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial14.htm[01.04.2009 23:32:24]

ET Mapping Tutorial
Lesson 14

Topics

Making a ladder

Making something to climb up

Making the ladder brush

Back to main menu

Making something to climb up [Top]

We'll make a ladder so we can get onto our building roof. Then we'll put a constructible MG42 on it in the
subsequent lesson.

You can make any object/wall something a player can climb up. For simplicity we'll just stick to a ladder
shape for now.

Run Radiant, open the map, and press 3. Create a brush where shown.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial14.htm[01.04.2009 23:32:24]

Ctrl+tab to get the side view, and make the first leg of the ladder the right height.

Tip: Sometimes there can be a lot of brushes around in the 2D window and you can't easily see
which one is actually the floor you want to place a new brush on. In the 3D window just select the
floor for a moment so you can see which brush lights up in the 2D window, and thus reveal where

the "floor" is. The deselect the floor and continue to move/re-size the brush you are working on.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial14.htm[01.04.2009 23:32:24]

Apply Textures/metal_misc ametal_m03 to the whole brush. Ordinarily you would caulk the faces that won't
be visible, but for the moment we won't, because we can create a prefab ladder which might be used in any
free-standing context. Once the prefab is created, you would import it as needed and then caulk the unseen
faces that suit where you've positioned it.

Set the brush to Make Detail.

Top down view again, select and duplicate the ladder leg, and position it as shown and press ESC. (You may
want to hide the sky if you keep selecting it by accident).

Draw the brush between them (and caulk it) that will serve as the ladder rungs.

Side view and position the rungs brush properly between the ladder legs.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial14.htm[01.04.2009 23:32:24]

Make the brush Detail.

Now select the rungs face that the would-be climber would go up and apply Textures/alpha ladder texture.
Press S and enter 1 in the width box and 3 in the height and click Fit. Then click Done and press ESC. We
use a texture that looks like ladder rungs instead of individual ladder rung brushes because:

It's quicker for us to make
It's quicker for ET to draw: one face instead of many faces on many brushes

If you want fancy rungs and you know there is no pressure on the FPS and you can be bothered, you can of
course make individual rungs, bricks, whatever, to indicate a climbable structure to the players. Make sure
you make them Detail !

Making the ladder brush [Top]

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial14.htm[01.04.2009 23:32:24]

Ok so we have something that resembles a ladder. Now to make it climbable.

Top down view, select the rungs brush and duplicate it. Resize and reposition it as shown.

Then apply Textures/common ladder texture (lavender/mauve check) to the whole brush. We now have a
functioning ladder. To make it more useful, select the ladder legs and rungs brushes too so we have all 4
brushes selected.

Right-click in 2D and select func\func_group. This has no effect on ET but is useful in Radiant. It means we
can select the group of brushes with one shift+alt+click. Handy when importing it and you need to move it.

You could File/Save Selected... if you want to save this in your prefabs folder as prefab_ladder.map.

Press ESC.

Save, compile and make sure you can scramble up your ladder :)

Next lesson

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial15.htm[01.04.2009 23:32:26]

ET Mapping Tutorial
Lesson 15

Topics

Making a constructible MG42

Making the constructible MG42 nest

Including the script

Back to main menu

Making the constructible MG42 nest [Top]

Generally speaking, making all the components for a constructible item is too much hassle to do from scratch
each time. So I use the Blue Peter method: "Here's one I made earlier".

By that I mean for things like constructible MG42s, Command Posts and Health & Ammo Cabinets, you just
use a prefab made before, tweak it a bit to get the placement and names right, and away you go. Saves
tons of time.

So I will provide you a link to the MG42 map elements for you to import, which includes the script chunk you
need to make it work. The rest of the lesson will be devoted to explaining what the components are and
what their settings mean, so you can reproduce them in your map as you need them.

Download the zip file, and unzip the script file to your maps folder, and the map file to your prefabs folder.
The script file is complete with the game_manager section too, so it can replace the previous tutorial.script
file.

We'll deal with the import of the MG42 into the tutorial map first.

Run Radiant, open the map, and import the prefab_axis_constructible_mg42 - I saved this in the right place
so that when you import it, it will already be placed on the roof of the house. If your house is not the same
dimensions, you'll need to drag the whole selection into place yourself.

http://www.pythononline.co.uk/et/tutorial/mg42.zip

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial15.htm[01.04.2009 23:32:26]

Let's go through the components so you understand what you've got.

Shift+alt+click the large trigger cube. This will select the large cube and a small cube within it. The one
within is the origin brush, which tells ET where the "middle" of the trigger is, regardless of the odd shape that
a trigger brush can be.

Press N to see the details of the trigger.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial15.htm[01.04.2009 23:32:26]

This trigger is not a trigger_hurt, it is a trigger_objective_toi (Trigger Objective Info), which means it is used
to determine when a friendly engineer will see the pliers hint.

This is an axis constructible MG42 we are making, so the axis_objective box is ticked.

The shortname is what gets displayed on the Command map.

The spawnflags is a number which represents the set of tick box settings you've chosen.

The target is the targetname of the entity to be constructed. When the pliers-waving is done, this is the
name of the procedure in the script that will get executed.

The track is the text that gets shown when a player enters the trigger volume, as in "You are near...".

The targetname is the name given to this toi.

You will see that axisconstruct_house_mg42 gets used as the common naming thread to join all the
components together.

Close the entity window and press H to hide the trigger. By successively selecting components and hiding
them, you can be sure you have seen everything.

Press shift+M to filter out the models, making it easier to select the clip brushes of the crates.

Shift+alt+click the crate brushes. If this doesn't select the brushes, keep doing it until it does. You can see
they will stop bullets with a wooden sound.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial15.htm[01.04.2009 23:32:26]

Press shift+M again to see the models again, and press N.

A script_mover entity has been used here, but in this instance this is a bit misleading, because the crates
don't move. The choice of a script_mover entity was simply a convenience and other entity types would have
done. This example for first taken from Goldrush and there's been no point in changing it.

What matters is that this is just a clip brush so that the players don't run through the crate models -
remember models don't impede player or missile movement.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial15.htm[01.04.2009 23:32:26]

The solid box is ticked because this is a script_mover which by default also doesn't impede player movement.

The targetname and scriptname are both axisconstruct_house_mg42_clip. Convention has it that if an
entity is going to have a script (ie a procedure appear in the script file) then you make the procedure name
(scriptname) the same as the entity name (targetname). But just because an entity has a scriptname, it
does not mean you necessarily have to have a script procedure for it. In other words, no harm done by
having a scriptname.

Close the entity window and press H to hide the clip.

Now shift+alt+click the crates model and press N.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial15.htm[01.04.2009 23:32:26]

This is the model of the crate boxes. A skin ie a texture, is applied to the crates model to make them axis
crates.

Models are not rotated in the map in the same way as brushes. That is, if you try to rotate a model
it won't do anything. To adjust the angle of a model, you use the "angle" key and a value in
degrees. If angle is not specified, 0 (East) is assumed. These boxes have been rotated 270

degrees.

The classname is misc_gamemodel rather than misc_model.

Use misc_model for any sundry model, no matter how big or small, that will just sit there and do
nothing, like trees.
Use misc_gamemodel if the model needs to be referred to in the script. There is an exception to

this which will be covered later.

Close the window and press H.

Shift+alt+click the flag. Press N.

This model is animated: the flag flaps in the breeze. Hence the start_animate and frames settings.

The 360 degree angle seems pointless, but hey, that's how it is in Goldrush so I've left it alone.

Close the window and press H.

Ok, that's dealt with the crates side of the MG42. Now select the red box which is the MG42, and press N.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial15.htm[01.04.2009 23:32:26]

I have given the MG42 a horizontal arc of 180 degrees, which allows it to spin completely round. Normally
the default arc is ok so harc is not specified

I wanted the built MG42 to face north, so I gave it an angle of 90 degrees.

Close the window and press H.

Shift+alt+click the clip brush that envelopes the sandbag models.

Press N.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial15.htm[01.04.2009 23:32:26]

The clip brush is a func_constructible, ie the subject of a toi trigger.

The MG42 + sandbags are to be built by axis, so the axis_constructible box is ticked.

The track in this instance is used by ET to tell it to consider anything else with the same track value to be
part of the constructible. So when the clip gets built, the models with the same track value undergo the
construction with it.

Close the window and press H. You are left with just 4 models. Shift+click any of them.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial15.htm[01.04.2009 23:32:26]

You know enough now from previous explanations to be able to interpret the settings shown.

Press shift+H to reveal everything again. Save your work and compile it. Don't test it yet.

Including the script [Top]

When your script gets large, you would just copy/paste the axisconstruct_house_mg42 portion of the
script supplied into your own script file. For now I have supplied the whole script file for convenience.

Open the script file in Wordpad or similar.

You will see the MG42 script procedure. I have commented what's going on throughout the procedure to help
you start to understand scripting, but this is the gist of what happens:

At game start, the various MG42 components are set to their initial required state, eg the MG42 wants
to start invisible.
The func_constructible can be destroyed by a satchel or dynamite (class = 2). Class 3 would be
dynamite only.
Once an engineer has waved his pliers long enough, the built final procedure gets executed, to bring
the MG42 into being.
If the engineer started waving but doesn't finish in time, the decayed final procedure gets executed.
Finally if the MG42 is destroyed, the death procedure gets executed.

With your script complete, you are ready to test the map: make sure you can construct it as Axis, and
destroy it as an Allied cov ops.

Next lesson

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial16.htm[01.04.2009 23:32:28]

ET Mapping Tutorial
Lesson 16

Topics

Secure doors

Making a door secure to your team

Back to main menu

Making a door secure to your team [Top]

This is a nice easy task :)

Run Radiant and load up the map.

Select the door using shift+alt+click.

Press N.

Enter allowteams as a key and axis,cvops as the value and press return. The axis door is obviously the
more common, but you can make allied secure doors by putting allies instead of axis. And if you don't put
the cvops part in, then enemy cov ops in uniform cannot open the door.

Close the window and press ESC.

To indicate the secure nature of the door, we should put a new door texture on.

Select both faces of the door and apply Textures/doors door_m01asml_axis texture (if you are not sure which
one this is, click on the texture you think it is, and check the name that comes up bottom right of the output
window.)

Press S and Fit the textures (1 wide and 1 high).

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial16.htm[01.04.2009 23:32:28]

Close the window, press ESC, save and compile.

You should find now that only Axis can open the door. You can't test for cov ops alone so you have to
ensure your spelling of axis,cvops is accurate.

Easy lesson!

Next lesson

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial17.htm[01.04.2009 23:32:30]

ET Mapping Tutorial
Lesson 17

Topics

Lighting

Ambient light

Light entities

Put on the red light

Adding a corona

Light-emitting textures

Back to main menu

Ambient light [Top]

Run Radiant and open your map.

You can give your map an overall minimum level of light, regardless of the location and lighting you've
included. This is the ambient light setting. It is optional.

If you feel your creation is just a little too gloomy generally, you might consider setting the ambient light.

To set it, select a regular brush and press N to get at the worldspawn settings.

Enter "ambient" in the key and a number say "10" in the value and press return. Close the window. I
wouldn't really go above 20 as it starts to wash things out and reduces the appearance of shadows. As a
guide, Breakout has a setting of 20; 6flags has a setting of 10; and 2tanks has no ambient light.

Light entities [Top]

We've already added 3 light entities to the tutorial map. We'll look at them in more detail and make them
look better.

In 2D overhead view, zoom in to the room with the Allied start point in it. I have moved the start up a little
so it doesn't confuse the picture with the light that is overhead.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial17.htm[01.04.2009 23:32:30]

Right click on the centre of the green light box and select misc/misc_model. Then navigate to
mapobjects\light and select cagelight.md3.

I've found that some light models either add hours to the compile time, or crash the game. These
are my findings:

These models are safe:

cagelight
cagelighta
cagelightr
p_nolight
lantern

These models should be avoided

pendant10k
sdsconce3

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial17.htm[01.04.2009 23:32:30]

Get a side view and move the lantern up to the ceiling.

Press 2 and lower the lantern one notch. We have to bring the lantern ever-so-slighty out of the ceiling
because you can't put a model into a structural brush. If the ceiling had been a detail brush you could have
put the model partially into it. If you find you can see the gap between the model and the ceiling, make
yourself a detail brush to run along the ceiling and close the gap between the ceiling and the light - make it
look like electrical trunking for example.

Move the light entity down a bit. It usually is just below the model.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial17.htm[01.04.2009 23:32:30]

If you put the light too close to the model it will cast a shadow of the model onto the ceiling. Which might
be ok, depends on what effect you want.

Compile and test that you see an illuminated cagelight model and that the light illuminates the room
satisfactorily. (In Radiant the cagelight will appear unilluminated.)

Put on the red light [Top]

Let's give the cagelight a red bulb. There is already a model for this.

Select the cagelight model and press N. Press the model button at the bottom right of the entities window.

Navigate to mapobjects/light and select cagelightr.md3.

Press ESC then select the light entity and press N. Enter the "_color" key and "0.900000 .0100000
0.100000" value as shown, to make this light red instead of white.

The numbers of the _color value are the amount of RGB (Red Green Blue) in the light. Values are 0 to 1 to
6 decimal places.

Close the entities window and press ESC.

Let's give this light a corona too. The corona is the glow that a player sees, which is bigger the more of the
light source he can see.

Adding a corona [Top]

Right click in the 2D view at the point shown, and select Corona.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial17.htm[01.04.2009 23:32:30]

Then press N. If you haven't clicked on any other entitiy keys in the entity window since setting the light
color, the _color stuff will still be in the key and value boxes. If so, just press return to input them. This is
a handy shortcut to setting the corona colour (although coronas are generally white because most light
sources in a map will be white). If the key is not _color already, one trick is to select the light entity, press N
and click on the _color row - this puts their values into the key/value boxes. Then close the window, press
ESC and select the corona. Now when you press N you'll have the boxes pre-filled.

If you corona is still selected, press ESC.

Compile and test the red light and make sure the corona is placed realisitically. Two things to note: one is
that a coloured corona doesn't show up as much as a white one, and also that the coloured light has actually
been shone through the closed door and has coloured the snow!

So this would be no good in a map - either you'd have to move the door or light, or make the light white,
which is what we'll do:

Select the cagelight model, press N and click model and change the model back to cagelight.md3. Close the
entity window and press ESC.

Select the corona, press N and click the _color row then click del key/pair, close the window and press ESC.

Select the light, press N and click the _color row then click del key/pair, close the window and press ESC.

Compile and test, and you'll see the effect is now fine.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial17.htm[01.04.2009 23:32:30]

Light-emitting textures [Top]

As you know, textures can give off an ambient light of their own, such as if you put a sky texture on a ceiling
or wall face. This is done by creating a shader (a set of instructions) for the texture. We won't need to do
this ourselves because there are plenty of pre-supplied light textures with the shaders already done.

Select both of the other lights in the room and delete them.

In 2D topdown view, create a brush which we will make into a ceiling light.

Press shift+M so that the models aren't shown. This makes it easier to see what we're doing.

Press 5 and draw a brush as shown. Caulk it and make it detail. Select the brush again.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial17.htm[01.04.2009 23:32:30]

Ctrl+tab so you can move the brush up to the ceiling. Press 4 so you can get it flush against the ceiling.

Apply a metal texture to all of the 4 side faces of the brush (shift+ctrl+click in 3D on one face and
shift+alt+ctrl+click the other 3). Metal_c07 will do, and it's already listed in the texture window.

Now shift+ctrl+click the bottom face, which will be our light texture.

Select Textures/lights and apply light_xlight3_4000.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial17.htm[01.04.2009 23:32:30]

The texture is misaligned on the face, so press S and click Fit and Done, and press ESC.

Select the brush, and shrink it upwards so it's not such a chunky brush. Use grid scale 2 to achieve this.

Press ESC and press 5 to put the grid scale back to something sensible. Press shift+M to remove the models
filter if you haven't already.

Compile and test and you should see something like this:

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial17.htm[01.04.2009 23:32:30]

Next lesson

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial18.htm[01.04.2009 23:32:32]

ET Mapping Tutorial
Lesson 18

Topics

Detail brushes vs structural brushes

Detail brushes vs structural brushes

Back to main menu

Detail brushes vs structural brushes [Top]

What's the point in having Detail brushes and Structural brushes?

Imagine two large room walls, one detail and one structural. This table shows the basic difference.

Brush type Blocks player line of sight? Blocks program line of sight?

Structural Yes Yes

Detail Yes No

What this means is that from a player's perspective, he can't distinguish "detail" brushes from "structural" ones - but the program
can.

ET has to decide what elements of a map might need to be drawn for a player every time it refreshes the display. And it does
this by judging what is in a player's line of sight, based on what structural brushes are in the way.

When Radiant builds the map, it breaks the whole volume of the map down into chunks (called portals), whose edges are made up
of structural brushes. I'll use this picture to illuastrate what this means in practice.

Suppose an area has been created that connects two rooms, as shown here. I'm sure
you've often seen examples where connecting corridors or passageways go through
seemingly pointless 90 degree bends, when a straight corridor would have made more
sense. Monte Cassino is one.

The map author has done this to reduce the amount of work ET has to do when
drawing the screen for a player.

A player in room 1 can't see anything in room 2 and vice versa. Indeed a player can't
stand anywhere and see both rooms at once. This is how it seems to the player and
how the map author intended.

But this is only true when the brushes are structural. If the brushes had been
detail although it would all look the same to the player, ET would actually draw
everything in the direction the player faces, regardless of all the intervening walls.
The player would still see the same though, because the nearest wall would get drawn
last and would obscure all the stuff behind it.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial18.htm[01.04.2009 23:32:32]

So how do you choose when to use structural and when to use detail? It would seem that if you made everything out of structural
brushes there could not possibly be any wasteful drawing by ET and you'd always get the best FPS....

Well yes. And no. The problem arises when some of the brushes you make are small and irregular, say for crates that are
scattered about at odd angles, likewise chairs, wall charts, steps of a flight of stairs, window ledges, cables, ducts, wonky fencing,
planks stacked at different angles, etc etc. You would make all these detail brushes, because they reasonably wouldn't affect
overall line of sight - if you're standing on a step, you'll see about the same when you stand on the next step - but more
importantly if they were made of structural brushes Radiant would break up the surrounding volume into vast numbers of portals
that would make your compile take forever and would clog up ET when it ran with vast portal tables telling it the 450,000 portals
you can see from one step, and the 450,000 very similar portals you can see from the next step and so on.

In summary:

Use structural brushes to define buildings and principal areas/rooms. Keep it in mind to try to separate main areas in this way
so that ET won't have to draw more than it has to. For example, in 110 Factory all of the outside is detail brushwork, while the
bunker and factory walls are structural. A player standing on the submarine will make ET draw everything in the direction he is
looking at, but not the insides of the factory, nor the rear of the bunker (it will have to draw the inside front of the bunker
because of the window opening).

Use detail brushes to make small details, intervening walls where it really adds little to the display overhead, and any surface like
steps, ramps, walkways etc where the view from one to the next differs very little. Also you really must make terrain with detail
brushes when using GtkGenSurf, which we'll cover later.

You will often forget to make brushes into detail as you make your map. A very handy tip is to press ctrl+D from time to
time to toggle the filtering of detailed brushes. When you press it first, all your detail brushes will disappear. It can then
be very obvious that you've got some structural brushes that ought to be detail. As you go around making them detail,

they disappear too. When you're satisfied, ctrl+D to get the detail brushes displayed again.

These pictures are of a Radiant view of 2Tanks. The first shows all the brushes.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial18.htm[01.04.2009 23:32:32]

Then we press ctrl+D and filter out all the detail brushes.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial18.htm[01.04.2009 23:32:32]

You'll notice virtually all of the roads, terrain and buildings disappear. They are all detail. The main areas the players can get
inside are made of structural brushes, so for example ET won't have to draw the inside of the Fuel Dump nor the inside of the V-1
Base unless the player is in there.

There was no point in making roads and dummy buildings structural, because there are too many ways for the player to see over
the top of them anyway, so they wouldn't really act as efficient blocks to line of sight. By keeping the dummy buildings simple
the overhead in displaying them is small, and it cuts down hugely on unnecessary portals (and keeps my compile time sensible!).

With 6Flags the difference is even more startling. Here's the normal view:

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial18.htm[01.04.2009 23:32:32]

And now with the detail brushes hidden:

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial18.htm[01.04.2009 23:32:32]

The open, rolling terrain, on which a player could get quite high, made it impractical to use structural brushes. It also meant I
couldn't go overboard on including too many fancy buildings etc as they would start to be a drain on the FPS.

Finally here's an "outside" view of TankBuster, showing how structural caulk brushes surround the overall environment.

Next lesson

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial19.htm[01.04.2009 23:32:34]

ET Mapping Tutorial
Lesson 19

Topics

Health and ammo cabinets

Health and ammo cabinets

Back to main menu

Health and ammo cabinets [Top]

This is another thing that you don't make by hand. This one that I have zipped was originally the health &
ammo cabinets near the Allied start on Goldrush. I put the cabinets in line with each other instead of at right
angles, put them at the same height as each other and created a prefab.

Download it, unzip the map and put it in your prefabs folder.

Run Radiant, open your map and import the prefab. It will appear near the 0,0,0 co-ordinate.

Drag it into place as shown.

http://www.pythononline.co.uk/et/tutorial/prefab_health_ammo_cab.zip

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial19.htm[01.04.2009 23:32:34]

That's it - no scripting needed. When a player stands near them they'll dish out health/ammo. The location
will also appear on the command map.

If you want more than one set of cabinets, you can duplicate the whole thing but you will need to make some
name changes: use shift+alt+click on each item in turn and for each one, press N and change "first" to
"second" for any key/value in which it appears, then Hide the brush and do the next.

If you need to rotate a set of cabinets, or a command post, it's quite a lot of aggro. Better is to
move the wall or find somewhere else to put it! But if you have to rotate the cabinets, rotate the
set by multiples of 90 degrees to keep it simpler. The nuisance is that you don't change the

orientation of models (which the cabinets do have) by rotating, so while the triggers and clips will rotate,
the models don't :(

You must instead select each model and press N and enter its new angle. Save your work before
attempting rotation on model/brush combinations! Especially true for trucks and tanks, and most of all for
command posts.

You can control how much and how quickly the cabinets dispense things.

Shift+click on the big trigger and Hide it.

Shift+click on the ammo trigger (it's on the right as you look at them in 3D).

Press N. You can see the ammorate and ammototal. Healrate and Healtotal apply to the other trigger.
These ones have the standard expected values so you normally won't need to change them. You can make
other things dish out health/ammo by using these triggers, like the water in the dog kennel in 2tanks.

Save, compile and test your cabinet.

Next lesson

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial20.htm[01.04.2009 23:32:35]

ET Mapping Tutorial
Lesson 20

Topics

Command Posts

Command Posts

Back to main menu

Command Posts [Top]

Of all the constructibles, destructibles, health cabinets and whatnot, the one thing you really don't want to
make from scratch is a Command Post.

Ok you can make a constructible wall by hand if you like, it's a little long-winded, but quite easily achievable
without resorting to "here's one I made earlier.".

But a Command Post has a number of fiddly, angled models and a variety of invisible brushes, and it really
isn't realistic to make one by hand.

So here are the prefabs you need. :)

Unzip them and stick all 6 files into your prefabs folder. There are 3 pairs of .map and .script files, being a
pair each for the Allies, Axis and Neutral Command Posts.

Run Radiant and open your map.

We'll put a Command Post against the north wall. The command post model is so complicated you really
want to avoid having to change its angle. So I always find a suitable wall against which I can stick a
command post without having to turn it around. You have been warned :)

Suppose we want to put the Axis CP there.

Go to File/Import... and navigate to prefab_axis_cp and import it. The model will appear below/left of
(0,0,0). Drag it to the north wall. It happens to have the correct Z co-ord value of zero, because I tend to
save prefabs with a Z co-ord of 0, and I try to keep much of my map floor surface around Z 0 for this
reason. It makes building things easier. (I also try to keep major height differences to multiples of 128 or
256, because again it makes something easier: texturing. It cuts down on having to re-align a texture.)

http://www.pythononline.co.uk/et/tutorial/tutorial_command_posts.zip

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial20.htm[01.04.2009 23:32:35]

Press ESC. Compile the map but don't yet go to ET to test it.

Now edit the prefab_axis_cp.script, and copy and paste the lot into the bottom of your tutorial.script file. (As
your script file grows, try to position new procedures in the right place alphabetically, ie put "allies"
procedures before "axis", and arrange all subsequent procedures by alphabetical procedure name. This makes
it easier to find things later.)

Don't worry about trying to interpret the contents of the Command Post procedure, it works just fine and you
don't need to know how the script works (until later in the tutorial.)

Save and exit from the .script file.

Run ET. We are not quite finished. We have to add the CP speaker. /devmap the map. Be an Axis
Engineer.

Go and stand directly in front of the unmade CP. It probably seems a bit dark. CPs generally have extra light
shone on them by an explicit light entity, as for some reason they otherwise show up dark. I don't know
why. Don't worry about it now.

Bring up the console and type:

\editspeakers
\dumpspeaker
\modifyspeaker

Then exit the console. Make sure the speaker is just in front of the CP.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial20.htm[01.04.2009 23:32:35]

Enter these values into the boxes:

Noise: sound/world/radio_axis.wav The "/" must not be a "\" this time!
Targetname: speaker_axis_cp
Looped: on Make sure you hear the axis CP sound. If not, you have mis-spelt the noise. Go back and
get it right then proceed from here.
Looped: off
Broadcast: nopvs
Volume: 32
Range: 1250

And click OK.

Go to the console, up arrow 3 times and press return to cancel speaker editing mode.

Enter \map_restart

Come out of the console.

Go to your unmade CP; there should be no CP noise. Make the CP. You should now get the noise and a
working CP.

Make yourself an allied cov ops and prove you can blow up the CP and that everything looks normal.

You are all done!

The allied prefab works just the same way, with these changed values:

Noise: sound/world/radio_allies.wav
Targetname: speaker_allied_cp

For the neutral CP you'll need 2 speakers, one for Axis and one for Allies. Put them beside each other.

Easy!!!!! :)

Next lesson

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial21.htm[01.04.2009 23:32:39]

ET Mapping Tutorial
Lesson 21

Topics

Curved walls and arches

Curved walls

Making an arch

Back to main menu

Curved walls [Top]

We can demonstrate how to use a simple curved surface by making one of the room corners rounded instead
of right-angled. You'll be able to apply this technique to making bulges in a wall, or convex shapes like arcs
of a column.

Run Radiant and open the map.

Select grid size 5 and draw a brush as shown.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial21.htm[01.04.2009 23:32:39]

Give yourself the 3D view that will show you what's going on in the corner.

Depending on what other brush manipulations you've been doing, you may or may not see the brush in front
of you. Let's assume you don't.

Click Curve\Bevel and see what you get in the 2D view. The brush has been converted into a curve called a
patch. You still select patches just like a brush, ie shift+click.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial21.htm[01.04.2009 23:32:39]

Do a Z-axis rotate 3 times so that the curved line fills the gap between the walls.

Ctrl+tab so you can position the curved section to fill up the gap from floor to ceiling. You'll need to change
to grid 4 to make the fit.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial21.htm[01.04.2009 23:32:39]

In the 3D view you'll now see some faint lines of your curved surface, but no texture, so you can see through
the new brush.

Click Curve\Matrix\Invert to flip the drawn face to this side.

We will give the new curve the matching wooden texture of the rest of the wall.

Press shift+S to bring up the Patch Properties window.

Shift+S for patches (the name given to this type of modified brush) is like S for the faces of regular
brushes. BUT: if you accidentally press shift+S when you meant "S", or "S" when you meant
shift+S, you will very likely crash your PC.

Scroll your textures window until you see the wood_test texture and click it. Ok the texture gets applied but

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial21.htm[01.04.2009 23:32:39]

it looks terrible.

Click Natural. This will look better, but it may be upside down. If so, click the up arrow Rotate Step four
times.

Press ESC. It should now look like this:

With a texture that has no discernible pattern, like concrete or metal, you won't see the join. With this panel
effect, we do see the join. It probably won't be noticed by anyone: did you notice the bad join in any of the
inner corners? They are probably there but not noticed.

We can either cover the join with some cosmetic furniture or trunking or similar; or we can adjust the
positioning/stretch of the texture to try to get a better fit.

Select all the inner room wall faces, other than the curved bit, but including the faces around the window and
door, and click the wood_test texture again. This makes the texture run properly from one face to the next,
but it also highlights what happens when brushes don't sit squarely at Z height intervals of 128. Because our
wall brushes are up a notch, the textures are vertically wrong by a notch.

We correct that by pressing S and the up arrow V Shift 4 times and then click Done. Press ESC. So alright,
the wall textures are all run smoothly, but the curved texture still doesn't quite fit.

Select the curve patch, zoom in in 2D and press V (Vertex tool).

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial21.htm[01.04.2009 23:32:39]

Click on the top left green dot and drag one notch to the left.

Click on the bottom right green dot and drag one notch downwards.

Press ESC twice. We've now got the curve probably as good as we're going to get it.

Finally we want to eliminate the wasteful face drawing that is behind our new patch.

Still in overhead 2D, select the north wall and cut it (X tool) where shown. Use Shift+Return to keep both
parts.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial21.htm[01.04.2009 23:32:39]

Press ESC twice and select the side wall, and cut it also where it meets the edge of the curve. Press ESC
until everything is deselected.

Now select the patch and Hide it.

Select the wall faces that are obscured by the patch, and caulk them. Press ESC.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial21.htm[01.04.2009 23:32:39]

Then press shift+H to reveal the patch again.

Save, compile and go and see how it looks in ET.

Making an arch [Top]

We'll add an archway inside the room. The same principle would apply to making archways and tunnels
outside of course.

Draw a brush as shown, then Select Complete Tall and Hide them. This just makes it easier to see what
we're doing in the room.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial21.htm[01.04.2009 23:32:39]

Let's put in a couple of uprights to be the arch supports.

Draw the brush as shown, caulk it and make it detail.

Get a side view and make sure it goes from floor to ceiling.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial21.htm[01.04.2009 23:32:39]

Select the 3 visible faces and give them the church_c01dm texture. Press ESC. Get the 2D overhead view
and then duplicate the brush, mirror it in the X-axis (x-axis flip button), and move it to the opposite wall.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial21.htm[01.04.2009 23:32:39]

Press ESC. Now we'll put in the connecting ceiling section prior to creating the archway.

Draw a connecting brush as shown and caulk it and make it detail.

Get a side view and shrink the brush up to a narrow strip at the ceiling.

Apply the brick texture to the 3 visible faces of the new brush.

Overhead view again in 2D and draw a brush as shown.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial21.htm[01.04.2009 23:32:39]

Curve/Bevel to turn it into a patch, then rotate it 90 degrees in the x-axis (x-axis rotate button).

Reize the brush until it's the same width as the columns.

It's the wrong way round for this side of the archway, so rotate it twice in the Z axis. Then ctrl+tab twice so
we can move it vertically into place. It should be placed as shown here:

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial21.htm[01.04.2009 23:32:39]

In the 3D view we can see the texture is on the inner face and we want it on the outer face:
Curve\Matrix\Invert.

Now we can also see that the texture is oddly stretched. Press shift+S and click Natural, then rotate it 90
degrees by clicking the up arrow rotate step twice.

Now to fill in the gap: Curve\Cap Selection\Inverted Bevel\OK.

We end up with a func_group consisting of the curve and two caps to plug the gap.

With the group still selected, get an overhead view, duplicate the group, mirror it in the x-axis and move it to
the other side of the archway. Press ESC. It should now look like this:

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial21.htm[01.04.2009 23:32:39]

When you press shift+H to reveal the hidden brushes you will see the light is sticking through the arch wall,
so move the light so that it isn't stuck in the wall. It is shown in the next picture with models filtered out so
you can see where I moved it.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial21.htm[01.04.2009 23:32:39]

Duplicate the light and drag the new light down to the middle of the new room area.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial21.htm[01.04.2009 23:32:39]

Save, compile and test the look of the arch. Backup your work if you haven't, in case it all goes pear shaped
later on.

Strictly speaking we should cut the upright columns and caulk the faces that are obscured by the arch
patches. Let's take that as read and move on :)

Next lesson

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial22.htm[01.04.2009 23:32:42]

ET Mapping Tutorial
Lesson 22

Topics

Cylinders, cones and curved roads

Cylinders

Cones

Curved roads

Back to main menu

Cylinders [Top]

Run Radiant and open the map. Default grid scale 4 is ok. Draw a brush as shown.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial22.htm[01.04.2009 23:32:42]

Click Curve\Cylinder - the brush becomes a patch. Get a side view and stretch the cylinder upwards to make
it into some sort of chimney-type pipe.

Click on the metal_c07a texture to texture the cylinder. The texture will probably look all stretched and
horrid. Press shift+S and click natural and done.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial22.htm[01.04.2009 23:32:42]

Note that only the outer surface of the cylinder is textured, the inner is effectively nodraw.

Let's warp the pipe. Press V and get a side 2D view. Filter the models (shift+M) to make the view clearer.
Zoom in. Note that the middle height points may not fall on a grid intersection. If not, drop down the grid
scale until they do.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial22.htm[01.04.2009 23:32:42]

In my example, grid 3 will do. Warp the tube in interesting ways by grabbing the illuminated vertices and
dragging them, one at a time. The cylinder will warp as you drag the vertex point. In my example, I've
dragged the top vertices to the left somewhat, and I've dragged the middle ones up, and outward to give a
leaning, bulging cylinder.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial22.htm[01.04.2009 23:32:42]

Experiment, using different 2D views, to see what sort of weird shapes it is possible to create. You can also
drag edges in 3D view, but this is trickier. Press V or ESC to cancel vertex mode when you've experimented
enough, but leave the brush selected.

If you want to cap the open ends, and create a solid-looking cylinder, click Curve\cap selection. The top and
bottom are neatly capped, and the three brushes are grouped for you automatically. We don't really want
the bottom cap, so a quick way of getting rid of it is to change to grid scale 9, lift the group one notch so you
can see under it in 3D, deselect the group and then select the bottom brush alone and delete (Backspace) it.

Then select the group (now only 2 brushes) with shift+alt+click and put it back down one notch.

If you want to see how your weird cylinder came out, save compile and test.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial22.htm[01.04.2009 23:32:42]

You can of course rotate these patches just like any other brush. But if you scale them, watch out! Scaling
downward may result in some of the critical control vertices not aligning to exact grid co-ordinates, eg
instead of a co-ord being (24, 56, 44) you might get (24.043, 56.324, 44.985), which tends to make things
crash. :(

So if you have to scale a cylinder (as I did when I wanted to make my V-1 creation of multiple cylinders
about 75% of its created size), you will need to examine all the component vertices in close up, with a grid
scale of probably 1, and drag to intersections any vertices that fall in the gaps between them.

Cones [Top]

Lets put a conical bulge on the roof. Draw a brush as shown. It will probably be as tall as your previous
cylinder - Radiant tries to guess your brush height requirement for a new brush based on what brush you last
tinkered with.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial22.htm[01.04.2009 23:32:42]

Click Curve\cone. The brush becomes a conical patch.

Move it up onto the roof.

My example looks like the nose of a V-2 rocket. But you can change the shape of a cone by using the Vertex
tool, just like with a cylinder. Try dragging the vertices around to create a rounder or a fatter cylinder,
whatever you need. If you need finer control of the shape, you can add more vertex points: click
Curve\Insert\Add 2 rows.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial22.htm[01.04.2009 23:32:42]

You can get some really weird shapes by dragging these vertices about. You can make some very intereting
sculptures...

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial22.htm[01.04.2009 23:32:42]

Curved roads [Top]

Make the tutorial map twice as big in area to give us some work space. Use grid scale 9 for this. Don't
forget to set the mapcoordsmins etc to 2048 0 and 0 2048. Just enlarge each surrounding brush in turn, and
hide them after resizing so you can easily get to the next brush.

Out in the new space we will create a curving path. Hide the ceiling so it doesn't get in the way. Select grid
scale 5 and zoom in a bit. Then create a brush as shown. You can show models again now if you like
(shift+M).

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial22.htm[01.04.2009 23:32:42]

Move the brush down until it sits on the ground.

Make sure you have the overhead 2D view. Then click Curve\Simple Patch Mesh and click OK. This turns
the brush into a patch of the same area as the brush, but with no depth.

Make the road curve by pressing V and dragging the vertices as wanted. I've made a gentle curve of uniform
width for its length, by dragging all the vertices in the same row by the same amount, whether to the left or
the right.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial22.htm[01.04.2009 23:32:42]

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial22.htm[01.04.2009 23:32:42]

Press V to turn off the Vertex tool. Next we'll give the curve some depth.

Click Curve\Thicken... then as we want the curve to be 16 units deep (just so it touches the ground in this
example), enter 16 and click OK. You get a chunky curve like a piece of scalextric track, defined as a group.
We can delete the bottom face like we deleted the bottom cap of the cylinder, by lifting the group,
deselecting it, selecting and deleting the bottom face, selecting the group again and putting it back in place.

You can create upward/downward slants in the curved path by lifting its vertices up/down before applying the
Thicken.

You don't have to worry about Detail brushes for patches, ET treats them all as detail anyway.

Save, compile and check out your creations.

Next lesson

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial23.htm[01.04.2009 23:32:45]

ET Mapping Tutorial
Lesson 23

Topics

Making terrain using GtkGenSurf

Concepts

Preparation

GtkGenSurf

Back to main menu

Concepts [Top]

Sooner or later you're going to want to make some outdoor environments, and unless it's all in a concreted
area, you're going to need to make hills, dunes, grassy paths, snowy mounds etc.

The usual way of making brushes to make an object doesn't really work here, so instead people use a third
party tool. One is EasyGen, which I don't use, and another is GtkGenSurf (a plugin included within Radiant)
which I do.

I haven't tried EasyGen so I can't comment on it. Also there's a new terrain-generating-kid on the block
called FATE, which looks like it will be really good when finished. As I haven't used it I will stick to explaining
how to do things in GtkGenSurf.

GtkGenSurf will generate an area of terrain using lots of triangular brushes, like the box Toblerone comes in,
with one end face the required texture and all the rest as caulk. You tell GtkGenSurf the area dimensions,
the required size of triangles, the textures to be used and the contours you want and hit the Go button:
GtkGenSurf then produces the terrain mesh, already grouped and ready for you to slot into place.

The approach I take to making terrain is this:

Identify the area in the map that needs terrain - it will need to be rectangular although when the
terrain is generated you can always chop away the stuff you don't want.
Make the dimensions multiples of 256 unless the terrain area is small, in which case you could use
multiples of 128 or 64 etc. The smaller the triangles you create, the more of them there will be. More
triangles means nicer looking, but higher demands on the PC to draw them. I have always used 256 to
date.
I give GtkGenSurf a rough description of the required geography and do the first generation.
If it looks roughly ok in Radiant, compile it and go run around in ET.
Note down the imperfections, like this bit is too tall, that bit is too steep, etc.
Go back to Radiant, delete the terrain, refine the description to GtkGenSurf and try again.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial23.htm[01.04.2009 23:32:45]

Repeat as many times as necessary to get it mostly right. This might take 20 goes or so.
For fine tuning I drag individual triangle vertices about in Radiant. This is very tiresome and to be done
last.

The brushes created this way for terrain should be of Detail type, otherwise you'd create a zillion
portals in the compile. This also means that the undulating terrain does not block program line of
sight, so for example the program will draw what's on the other side of a hill, even if a player

couldn't see it. This is why in many maps you'll find buildings separating areas of the outdoors, so that the
Structural brushes of the buildings can intervene between the Detail brushes of the terrain and reduce the
demands on your graphics card and so improve the FPS.

This is why with large outdoor expanses like in Glider, 6Flags and 2tanks, I've had to be careful with the
amount of cosmetic detail included, because so much of the map will be drawn all the time.

Preparation [Top]

GtkGenSurf is capable of producing terrain according to a number of styles, but I've found there is just one
that seems to be the most practical, and I've stuck to it for all the terrain I've ever made.

It can base the undulations on the forms of waves, cylinders or fractals, or from a bitmap which specifies how
the lumps and dips should be laid out. In practice I've found the bitmap method to be the most useful, so
that is what I'll describe here.

You can create a rectangular bitmap, ie a graphical file of type .BMP, and by colouring the pixels in it in
varying shades of black to white, tell GtkGenSurf how you want the terrain to rise and fall.

The tutorial map is 2048 * 2048. We'll make the terrain mesh size 256 units (1 box in grid scale 9) as this
will be fine for the demonstration. 2048 / 256 is 8, so the size of the bitmap will be 8 * 8 pixels.

The tutorial map currently has lots of stuff in the bottom left quarter, with the rest more or less empty. We'll
make the empty 3/4 a bit hilly, and make the bottom 1/4 flatter.

Use Paint Shop Pro or any graphics editing software to create an 8*8 image. Make it greyscale, ie 256
shades of grey only. A coloured BMP will not do. Fill it with black.

Black represents 0 height. White means 255 high. The lighter the grey the greater the corresponding height,
as interpreted by GtkGenSurf.

Make the top & right area some dappling of grey to give some slopes there. Here is a zoomed in image of
an example 8*8 BMP.

As can be seen I've left the bottom left corner flat for now, to avoid some of the features we've put there
disappearing into the terrain.

Save the file as a .BMP file type, eg tutorial.bmp.

GtkGenSurf [Top]

Run Radiant and open the tutorial map. Select grid size 9.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial23.htm[01.04.2009 23:32:45]

Zoom/move the 2D view so you can see the whole map.

Click Plugins/GtkGenSurf/Ground Surface... and this window opens up.

Make sure that:

"Quake 3 Arena" is chosen as the Game
"Ground surface" is selected for Orientation
"From bitmap" is selected for the Waveform
A "Roughness" value (how much irregularity should be introduced to the undulations) of 50 is fine, and
pick any random seed you fancy (a starting point for the random numbers used - who cares really).
With a non-zero roughness it means that areas you've specified as black, ie flat at ground level, won't
actually be completely flat, there will still be little curves and bumps.
"Antialiased lines" ticked is nice

Click on Extents tab.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial23.htm[01.04.2009 23:32:45]

We must enter the map extents, ie tell GtkGenSurf the size of the area to create terrain for. Seeing as we
are using the whole map and we created the map with the lower left corner at (0,0), this is easy: the bottom
left is (0,0) and the top right is (2048,2048).

As it happens, the Divisions default is x=8 and y=8, which happens to be what we want for our 8*8 terrain
mesh. If the map had been 4096*4096 and the box size were still 256, you'd enter 16 and 16 here.

Click on Bitmap tab.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial23.htm[01.04.2009 23:32:45]

Browse to the BMP file you created. Don't worry about the map color boxes, they can be used to scale the
undulations to increase the height range above 256, but we don't need that now.

Click the Preview box. This will show you what the geography will look like.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial23.htm[01.04.2009 23:32:45]

GtkGenSurf has some quirks and bugs. One bug is that if you run it again, even though the Preview
box is ticked, it won't open the Preview window - you have to untick it and tick it again.

You can view the mesh from different angles by changing the Elevation and Azimuth of the viewpoint.
Remember 30/30 is the default view.

Another oddity is that the 3D preview isn't easily matched to the top/bottom of your map. You'll
have all sorts of fun trying to guess which bits of the terrain will go in which parts of your map.
With a simple 8*8 where the terrain is obvious, it's ok. When the terrain is 80*80 with lots of

bumps and valleys, it becomes less obvious. This is because of another quirk which you'll see next as we
get the opportunity to fine tune any of the terrain grid intersections using the Fix Points feature.

By the way, I generally place the GtkGensurf window top left on my screen and put the preview window next
to it, and then make the preview window as large as possible. This doesn't matter at 8*8, but it will at
80*80 or similar.

Click the Texture tab.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial23.htm[01.04.2009 23:32:45]

The Surface texture is the main texture that GtkGenSurf will use when it makes the terrain. You can change
this to the texture you want. While I'm making the Ludendorff map I am using some grassy dirt texture.
You should pick an organic texture, something like grass, dirt, snow, gravel, sand etc. There are some good
grassy choices in the textures/temperate_sd set, so for now I suggest you choose master_grass_dirt3. There
is no "browse" option, so you have to type it in. Don't put .tga or .jpg at the end, just give the texture
name.

The Other texture should be left as caulk.

The Steep texture is the texture to use for steep angles, defined as 60 degrees or more unless you change
it. You would make this either the same as the main surface, or if you wanted say hills to be grassy mainly
but rocky on the steep slopes, you'd give a rocky texture here.

Make sure the "Use detail brushes" box is ticked.

Yet another bug is that often GtkGenSurf will not use the texture you specified. It tends to get it
right more often if the texture is already in use somewhere in your map, but this isn't guaranteed.
Once it starts to get it wrong it's quite tiresome trying to convince it to use the right texture. It may

also forget the texture used when you save an INI file to record the settings you are using. You may have
to go into the INI file and change it by hand, as explained later. Sometimes closing Radiant and starting it
again will help GtkGenSurf get its act together.

 Click the Fix Points tab.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial23.htm[01.04.2009 23:32:45]

The main window of interest is the preview window.

We can change the height of any point (except the yellow ones) by clicking on an intersection, and then

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial23.htm[01.04.2009 23:32:45]

entering the required height value. If you enter a value in the Range Affected box, nearby points will be
adjusted too. As the adjacent points are 256 units away, you'd enter say 512 to affect your 2 nearest
neighbours in all directions.

Click on a point and increase the height value so you can see the effect of your adjustment. I have made an
exaggerated adjustment here to make it obvious.

I don't really want this spike, so I can release it by clicking Free and it will return to its original value.

What you will find is that it is hard to equate where you click on the grid to where in the terrain you are
actually affecting. This is a pain. Sometimes I flip the image upside down with the Elevation and spin it
around with the Azimuth to get the left and rights to match up - but then the top and bottom are reversed.
:(

It's trial and error and you must pick the view orientation that makes the most sense to you.

I'll repeat the point adjustment, but this time with a Range of 512.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial23.htm[01.04.2009 23:32:45]

You'll see how the neighbouring points are dragged upward. This is neat and goes some way to
compensating for the aggro you'll have in trying to work out which point is which...

You can adjust multiple points simultaneously by ctrl+clicking on the grid, and you can do rectangular ranges
by shift+clicking.

For now we'll just leave it to the default values. If you've made the grid a mess, click Free All.

Nearly done. To record all these settings so you don't start from scratch next time, you should now click
Save As... and save your settings as tutorial.ini in the Radiant folder.

Yet another bug is sometimes the Save As dialogue box will have gibberish in the "Save as type"
box. Ignore it and just type the name of the file you want to save to.

You are now ready to create the terrain. Click the Ok button on the GtkGenSurf window. It will create the
brushes, being 2 triangles per box, already grouped (so they show as blue triangles) at the (0,0,0) co-ord.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial23.htm[01.04.2009 23:32:45]

Your view should look something like this:

We have new terrain and the old floor overlapping. Either we'll need to move everything up a bit, or move
the old floor down. We can't just delete the old floor because it forms part of the structural boundary of the
map. In general you'll make maps that are totally enclosed in hull caulk cubes, with all 6 faces of the
surrounding brushes given hull caulk, so that you are free to create/delete anything inside it without worrying

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial23.htm[01.04.2009 23:32:45]

that you are making a hole into the void.

For the sake of simplicity we'll just move the floor down a notch. Get a 2D side view. Change to grid size 7.
Select the old floor brush and move it down one notch. Click on the hull_caulk texture in the textures window
to give the whole brush that texture - we don't need it to be drawn as snow any more.

Press ESC. Select all 4 of the surrounding wall brushes, and extend them down one notch to meet the
bottom hull_caulk brush, thus making the solid surrounding cube again.

Press ESC. Your view should now look something like this:

If you generally don't like how the terrain has come out, rather than specific detailed parts which we could fix
by hand, select and delete the terrain group and go back to GtkGenSurf. It will still have your details so you
can just Fix Points differently and try again.

If though you have exited Radiant, GtkGenSurf will not know your terrain settings, so you will first have to
use GtkGenSurf's Open... button and tell it to open "tutorial.ini".

An important detail to note is that there is a chunk of terrain inside the building.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial23.htm[01.04.2009 23:32:45]

It's at this point that it starts to become clear why we have taken such trouble to make our buildings line up
along big grid lines where possible. Choose grid size 9 and get the overhead 2D and you can see the terrain
triangles that fall within the building. There are 6 of them.

Select all 6 triangles in the 3D view, by first hiding the intervening floor brushes, and delete them. Press
shift+H to reveal the floor brushes again and it should look like this:

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial23.htm[01.04.2009 23:32:45]

This will have revealed some gaps around the bottom of the building, as shown here:

The better solution to all this is to manually adjust the triangles in Radiant, but we'll come to that in the next
lesson. For now just select all the floor brushes again and extend them downwards in the 2D side view using
grid scale 5. This will still leave a problem with the door, because the terrain comes up the door a bit, and
you'll see its caulk when opening the door from the inside. We'll fix all this in the next lesson.

Save, compile and run around in your new hilly environment.

By the way, when taking screenshots from ET you usually have to increase the brightness (eg 40%) and
contrast (eg 20%) otherwise the JPG looks too gloomy.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial23.htm[01.04.2009 23:32:45]

Whether or not you can plant landmines will depend on the texture you used. If it's a shader with landmines
enabled, you'll be able to plant landmines.

A neat way to see if a texture is actually a shader (ie there is a bit of script-like information for it
which gives it properties instead of just being a picture) is to shift+click on the texture of interest in
the textures window. Make sure you have pressed ESC first or you will apply the texture to any

selected brushes/faces.

If the image is a plain texture, Radiant will report something like: ERROR: textures/egypt_floor_sd/block-
16sq is not a shader, it's a texture.

If it's a shader, ie there is an entry for it in a shader file, Radiant will open the shader file using Wordpad or
whatever you have associated with .shader file types. Find the texture name in there and see if
"surfaceparm landmine" is given under it. If it is, you can plant landmines on faces with this texture.

Next lesson

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial24.htm[01.04.2009 23:32:48]

ET Mapping Tutorial
Lesson 24

Topics

Fine tuning the terrain by dragging vertices

Fine tuning the terrain by dragging vertices

Back to main menu

Fine tuning the terrain by dragging
vertices

[Top]

Run Radiant and open the tutorial map.

It will help you follow this lesson if you use the same terrain BMP as I did. So download it here, delete your
existing terrain mesh (select the group and delete it), and use the supplied image1.bmp in GtkGenSurf to
generate the terrain I have used.

Delete the couple of silly cones that we created earlier, to give us some clear space - we don't really need
them, they were just for ililustration of technique.

In the previous lesson we created the terrain which was generally fine, but a chunk of it obscured the door.
To clear this chunk out of the way we will edit the terrain manually by dragging their vertices about. Manual
editing is something you should do last, because if you decide subsequently to regenerate the terrain with
GtkGenSurf, you will lose your editing (unless you go to great lengths to retain your edits and restore them
after the regeneration - best avoided).

Manual editing of vertices is error prone. Very. Backup or save your map before you start. It is
also highly likely that Radiant will create errors even if what you have done is correct. We can
usually sort these, but then again, that backup may come in very handy. You have been warned :)

In the 3D view look, select the door and the terrain that is blocking it.

http://www.pythononline.co.uk/et/images/tutorial/23/Image1.bmp

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial24.htm[01.04.2009 23:32:48]

We've selected the door to help us identify the selected terrain triangle in the 2D view, and to see how far
down we have to lower it.

In the 2D view, get the side view that makes the selection the clearest to work on.

Deselect the door (in the 3D view will be easiest).

Press V to engage vertex mode. Little green dots appear at each vertex of the triangle.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial24.htm[01.04.2009 23:32:48]

This illustrates one of the problems encountered with this activity: trying to spot which green dot to use. You
can click on the required vertex in the 3D mode if you can see/guess where it is - or you click on the one you
think it is in the 2D view. The one we want is the top right dot.

You should zoom in on the dot to ensure it is on a grid intersection. If it isn't, reduce the grid scale
until it is. If you attempt to move the dot when it didn't start on an intersection you will make an
almighty mess of your triangles.

If it isn't clear how far you need to drag the vertex, you can briefly select the door or the floor so you can
see the required baseline, but you will need to press V again.

Drag the vertex down to the required baseline.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial24.htm[01.04.2009 23:32:48]

In the 3D view this now appears that the terrain is out of the way. Check it by going inside the building,
selecting the door and hiding it.

As you can see, there is still some caulk showing, so we need to drag another vertex down too. But this time
it is slightly more involved, and in fact is much more the usual state of affairs, being that we'll need to drag
multiple vertices at the same time.

Take your 3D view outside again. Get the 2D overhead view. In the 3D view (it is easiest unless you hide
the sky to make 2D selection easy) select all of the triangles that share the vertex at the corner of the
building. There are 6 triangles to select.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial24.htm[01.04.2009 23:32:48]

This is what the 2D view should show:

Press V and select the required vertex - this gets quite hard in 2D but sometimes with the rolling hills it can
be impossible in 3D so even the quite hard 2D view is easier :(

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial24.htm[01.04.2009 23:32:48]

As can be seen, the required vertex is not grid aligned. As we are at grid scale 4 and the dot is clearly 1/4
up from a line, we'll need to drop down 2 scales: press 2 to get grid scale 2.

Ok now we have the required scale, but it has become hard to see where we have to drag it. The best thing
is to drag it just enough to put it onto a bigger, better grid scale. So drag it one notch down, then press 4 to
go back to grid scale 4.

Drag it down a couple of notches, and it should look like this:

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial24.htm[01.04.2009 23:32:48]

Press ESC to let go of all the brushes. You can see now that the door is unobscured, so you can reveal the
door again.

When you edit your terrain mesh this way, Radiant may well generate duplicate planes, which will
cause your compilation to open the debug window. So after each editing session and before you

compile, you should click the Brush Cleanup button. If it finds errors it deletes them and tells
you how many invalid planes were removed. it also selects the mesh group. You should deselect the group
and click the button again until the Brush Cleanup reports 0 invalid/duplicate planes removed. Finally
deselect the group and save your work.

There will be occasions where the vertex you wish to manipulate shares its Z co-ordinate with
another vertex of one or more of the selected triangles (ie, that point of the triangle shares its height
with other points on the selected triangles). In the 2D view you will not always be able to see the

other vertices at the same height as they may be obscuring each other depending on whether you are
looking down the X or Y axis at them.

When you try to select and drag the vertex, you may find you are dragging the wrong vertex :(

This is because even though you may have selected the right vertex in the 3D view, when you click on the
blue dot in the 2D view, Radiant will realize that there is another vertex at that point which is closer to you,
the viewer, and so handily selects that one for you. You may notice this has happened in the 3D view - but
if you don't, you're going to start dragging the wrong vertices. Watch out for this. If you find this
happening, try using the other 2D side view. Or selecting the other troublesome triangles and move their
offending vertex up/down a little to get it out of the way. Final option is to carefully drag a notch up/down
in the 3D view - this is hazardous as it is easy to accidentally drag sideways.

Final tip is to remind you to get down to the lowest grid scale needed to get your vertex onto a grid
intersection. Then move it to a nearby larger scale grid intersection, change the grid scale up accordingly by
pressing a bigger number, even 9 if possible, then zoom out in the 2D view and drag in larger increments.
Always try to leave any dragged vertices on nice big grid intersections, it will help you a lot.

Do not drag vertices sideways in the 2D view, only up and down!!!!

Next lesson

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial25.htm[01.04.2009 23:32:50]

ET Mapping Tutorial
Lesson 25

Topics

Skyboxes

Intro

Skyboxes

Back to main menu

Intro [Top]

A skybox is a device to make it appear that there is more terrain in the far background around your map.

You don't need one if your map is entirely indoors with no distance view outside. Its use is optional if you
have outdoor areas or views.

If you don't use one, your sky will look like the sky texture you've chosen. If you do use one, the sky faces
will instead show the distant background. This works best if the sky ceiling is 512 units high. If it gets
hugely high, like 3000+, the projected image gets so elongated vertically that it starts to look bad. In which
case you may be better off without a skybox.

To create one you will place a self-contained hollow cube somewhere outside your map volume, ie out in the
void somewhere. The inner faces of the cube refer to the image to be used as distant background, and a
special camera entity is placed in the middle of the cube so that the compiler knows it is being used as a
skybox.

You will need to add a skybox definition to your <yourmapname>.shader file.

Making a skybox texture is a bit of an art, and not easily done by the uninformed like you and me :)

Happily, people create skybox images and make them freely available. One such excellent chap is
Amethyst7. You can get a number of great skybox textures from him at:
http://amethyst7.gotdoofed.com/env.htm. If you do use one of his, please credit him in the ReadMe that
you'll create for your PK3.

Skyboxes [Top]

So you won't have to create one from scratch, download this file: prefab_skybox.zip

This is the Siege skybox, one of Amethyst7's.

Create an empty text file in the etmain/scripts folder called <yourmapname>.shader.

http://amethyst7.gotdoofed.com/env.htm
http://www.pythononline.co.uk/et/tutorial/prefab_skybox.zip

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial25.htm[01.04.2009 23:32:50]

Create a folder called "skybox" in the etmain/textures/<yourmapname> folder.
Open the zip file.
Put the .map file into your etmain/maps/prefabs folder.
Put the .shader file into your etmain/scripts folder.
Put all of the .jpg files into the etmain/textures/<yourmapname>/skybox folder.
Edit the prefab_skybox.map file and change all references of <yourmapname> to "tutorial" (no quotes)
or whatever map name you are using.
Do the same with the prefab_skybox.shader file.
Copy the text in prefab_skybox.shader into the <yourmapname>.shader file.

Make sure you have "<yourmapname>" eg "tutorial" added to the shaderlist.txt file.

Run Radiant and open the map. Import the prefab_skybox.map into it, and move the cube without resizing it
until it is outside your own map volume, that is, it doesn't come anywhere within your own map space. I
always put it near the bottom, off to the left.

Compile your map and go take a look in ET. You should see some nice snowy hills in the background with
clouds scudding across the sky :)

Next lesson

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial26.htm[01.04.2009 23:32:50]

ET Mapping Tutorial
Lesson 26

Topics

Bespoke graphics

Bespoke graphics

Back to main menu

Bespoke graphics [Top]

If you want to include your own textures, you simply create them using an image editor like Paint Shop Pro,
and store them in the etmain/textures/<yourmapname> folder. They will need to have widths and heights of
64, 128, 256 or 512 pixels. If your image isn't precisely any of those sizes, maybe it's an irregular shape like
a person outline, then make the dimensions of the image just large enough to accommodate your irregular
picture, still keeping to one of those 4 pixel sizes, and just use black for the unwanted image area.

You can always crop a brush to remove the unwanted black surround.

All textures have a shader, even the ones you haven't created a shader for. This is because ET uses a default
shader for any texture lacking a user-defined shader. A shader tells ET what special properties apply to the
faces with this texture on it. The default shader would have things like: use the default footsteps sound, the
textured face blocks players and bullets and missiles, the faces should show bullet holes and scorch marks
etc.

If you wanted areas of transparency you must create a shader for your texture, else the transparent area will
just show as black or whatever colour you used to represent transparent.

We'll cover shaders later on.

Be aware that if you made a cubic brush and applied your texture to all of them, 3 would show your image as
is, and 3 would show a mirror image of it. If you had writing on your texture you'd need to make a copy of
it, apply your own mirror image, and use that one for the 3 "wrong" faces.

Next lesson

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial27.htm[01.04.2009 23:32:52]

ET Mapping Tutorial
Lesson 27

Topics

Making a constructible object

Preparation

Making the constructible

Writing the script

Back to main menu

Preparation [Top]

Constructibles are best included by importing one made earlier, rather than create all the components
manually. I've found the best way is to have a template map and script, edit them to yield the required
names and then import them ready assembled straight into the map.

I have put an allied constructible template here for you to download. Unzip it and put the 2 files into your
maps/prefabs folder. Don't amend these, just use them as the template to stamp out allied constructibles as
you need them.

Make a copy of etmain/maps/prefabs/prefab_allied_constructible_template.map and call it
etmain/maps/_temp.map. By calling the copy "_temp" it will appear early in your list when you import it,
and you know to chuck it away later on because it is "temp".

Edit _temp.map with Wordpad or similar. Make these changes:

Replace all instances of "alliedconstruct_n" with "alliedconstruct_1" as this is the first allied construct to
add to the map. You could change the name to something more meaningful if you like, eg
"allied_ramp", but I'm sure you get the principle.
Replace "Allied Item" with the name to appear on the Command Map, in this instance we'll make an
assault ramp, so make it "Assault Ramp".
Replace "Allied Construction" with the words to appear next to "you are near...". In this example, "the
Assault Ramp".
Save and close the file.

Making the constructible [Top]

Run Radiant and open the map.

http://www.pythononline.co.uk/et/tutorial/prefab_allied_constructible.zip

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial27.htm[01.04.2009 23:32:52]

Import "_temp.map".

While it is still selected, drag it into some space in the map, as shown: It should already be at about the
right height, but in your own creations you'll need to make sure the crates and surrounding trigger are placed
at the right height - the ramp we'll build where we want it, so the little box that is the template constructible
can go anywhere at the moment.

Press ESC. Let's make the ramp. You could of course make anything you like as a constructible, but for this
example we're going to make a very simple wooden ramp.

Draw a brush as shown.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial27.htm[01.04.2009 23:32:52]

In the 2D side view, make it a reasonable thickness for a wooden ramp. I used grid size 4 and made it one
notch thick.

We'll assume the ramp can be seen from all angles, so there will be no caulked surfaces. Therefore, make
the whole brush wooden by clicking on the wood_c01 texture in the textures window.

If the textures are aligned the wrong way, press S and rotate them by 90 degrees, and click Done.

Make the brush Detail and by now you should have something like this:

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial27.htm[01.04.2009 23:32:52]

Now we'll angle it and put it against the wall. Select the brush and click Selection/Rotate/Arbitrary Rotation,
put "30" in the "Y" box and click OK. Remember to use nice round degrees of rotation whenever possible - it
gets very nasty trying to get other elements to line up if you don't.

Now slide the brush so that it rests against the wall and on the surface of the grass. The following image has
models filtered to make it easier to see.

Press ESC. You'll see that the edges of the ramp now have misaligned textures. Select the 2 affected faces,
press S, enter "-30" in the Rotate Offset box and click done.

Press ESC. We'll add an upright support. Draw a brush:

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial27.htm[01.04.2009 23:32:52]

Caulk it and position/resize it as shown so that it supports the ramp.

Press ESC then select the 4 visible faces and make them the same wooden texture. You should now have a
ramp like this, ready to be made into our constructible.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial27.htm[01.04.2009 23:32:52]

Select both ramp brushes, then select the constructible box brush. Right-click in the 2D and select "Move
into entity". You have now made the ramp part of the constructible. Press ESC. Select the box brush and
delete it. This will reveal the origin brush inside it. The origin brush tells ET roughly where the middle of the
constructible is deemed to be. Select the origin brush and move it to the middle of the ramp.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial27.htm[01.04.2009 23:32:52]

Press ESC. Prove that the origin brush and both ramp brushes are now one entity by shift+alt+clicking one
of the brushes in the 3D view - they should all be selected.

Press ESC. Save and compile the map, but don't go into ET yet - we have to write the script to make it
work.

Delete the "_temp.map" file, we don't want that any more.

Writing the script [Top]

Using Wordpad or similar, open the prefab_allied_constructible_template.script file. Copy all the text, and
paste it into the tutorial.script file, after the game_manager section and before the "axis construct" section.

Replace all 7 instances of alliedconstruct_n with alliedconstruct_1.

Where it says "Allied Team have built the box!" change it to "Assault Ramp constructed!" or whatever you
want. You can use the usual ET colouring convention if you want words in different colours, eg a prefix of
"^3" would make the text yellow.

Where it says "Axis have destroyed the box" change it to "Assault Ramp destroyed!".

Later on we'll add some speech but we'll skip that for now.

As the ramp will be destroyable by a satchel, we can leave the constructible_class set to 2.

Save and close the script file.

Run ET and have fun making and breaking your assault ramp :) In practice, you wouldn't place a
constructible so close to a CP or other constructibles/destructibles.

I'll get some Axis templates together for you shortly.

Next lesson

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial28.htm[01.04.2009 23:32:54]

ET Mapping Tutorial
Lesson 28

Topics

Making a destructible object like a gate

Preparation

Making the destructible

Writing the script

Back to main menu

Preparation [Top]

Like constructibles, destructibles are best made by using a template already created.

I have put an allied destructible template here for you to download. Unzip it and put the 2 files into your
maps/prefabs folder. Don't amend these, just use them as the template to stamp out allied destructibles as
you need them.

Make a copy of etmain/maps/prefabs/prefab_allied_destructible_template.map and call it
etmain/maps/_temp.map. By calling the copy "_temp" it will appear early in your list when you import it,
and you know to chuck it away later on because it is "temp".

Edit _temp.map with Wordpad or similar. Make these changes:

Replace all instances of "allied_destructible" with "gate" as this is the name we'll use for the gate
destructible. You could of course use any name that suits you.
Replace all instances of "Allied Destructible" with the name to appear on the Command Map and next
to "you are near...". In this instance we're making a big gate, so make it "Main Gate".
Save and close the file.

Making the destructible [Top]

Run Radiant and open the map. We're going to put the destructible gate into some clear space.

Select grid size 9. Get the 2D view over the clear space and delete the few bits of terrain as shown.

http://www.pythononline.co.uk/et/tutorial/prefab_allied_destructible.zip

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial28.htm[01.04.2009 23:32:54]

Now draw a brush in the space we've made, make it wall03_mid texture, and make it Detail. Then select it
again, lift it up so you can see the bottom and caulk the bottom face (Tip: select the face to be caulked, then
also select a nearby caulked face - this will bring the caulk texture into view in the textures window, ready for
your quick selection.)

Then move the brush back down into the gap, and ensure it neatly fits with no gaps showing around the
sides where the terrain brushes meet it.

We will put the gate to be destroyed on this nice flat surface. Import _temp.map and move the imported
selection onto the middle of the flat slab.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial28.htm[01.04.2009 23:32:54]

Now to explain what we have here.

Shift+alt+click the trigger brush, and press N. Close the window and press N again so we see the tick boxes.

This is an axis_objective because it is owned by the axis team. It seems to me that something to be
destroyed by the allies ought to signify an allied objective, which is exactly why you should use a prefab as it
is easy to tick the wrong boxes when creating one from scratch.

The targetname and scriptname are gate_toi, being the name of the destructible plus "_toi" to indicate the
trigger_objective_info. This is not a universal naming standard, it's just one I adopted for myself so I could

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial28.htm[01.04.2009 23:32:54]

easily identify an entity type by the type of name it had.

The target is the name of the destructible entity - you can tell if you've made a naming error because the
trigger brush won't have an arrow line connecting it to the target brush(es). This line can't really be seen
when the target brush is inside the trigger, which it normally would be because the trigger indicates where
the attacker must plant dyna or chuck the satchel. So to see it, select grid scale 9 and drag the trigger brush
away a notch.

Now you can see the arrow connecting line, so the names are ok. Put the brush back over the gate.

The objflags is set to 4, telling ET to show a dyna symbol when a player enters the brush. I haven't seen a
full list of possible values and I don't remember where I read even the partial list that told me to use 4 for
dyna, but there will be a different value for different symbols. The only other one you might want really is
the satchel symbol. Experiment with powers of 2 (1, 2, 4, 8 etc) to discover what the symbols are if you
need symbols other than dyna.

The spawnflags is set to 1, which is a reflection of the tick box settings we have. The other values are
obvious.

Hide the trigger so we can examine the other components.

Shift+alt+click the middle of the gate until the whole rectangle is selected (I'm using grid scale 6 again now).

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial28.htm[01.04.2009 23:32:54]

This is the thing we want to blow up. Press N.

We have the useshader ticked so the temporary fragments are textured nicely.

The mass tells ET how chunky to make the bits that fly away from the bang. These bits will all disappear
after a short time.

The targetname and scriptname are "gate", which will be referenced in the script.

Hide the gate. Now you can see the remnants that will be permanently shown after the explosion. They
won't be visible before the explosion because they will be invisible when the map starts. You don't have to
have remnants, it's up to you. I include them here so you can see how they are made if you want them.

Shift+alt+click on a remnant brush and they will all get selected.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial28.htm[01.04.2009 23:32:54]

These bits were made by copying the gate brush (and then right-click and "Move into Worldspawn" so that
the copy wasn't a desctructible). The copy was then chopped up with the clipper tool. Most of the copy was
deleted, some of the bits were left in place, and some scattered onto nearby ground (with the downward face
caulked of course).

Then all the bits were selected and made into a func_static which is a way of making some brushes into an
entity so you can refer to that entity. We will need an entity name because we will want to make these bits
visible after the explosion.

The start_invis box is ticked. Makes sense. I gave the entity a targetname of gate_bits so I knew what I
would be referring to in the script.

Reveal the hidden brushes, close the Info window if you have it open, save the map and compile it. Don't
run ET yet.

Writing the script [Top]

Using Wordpad or similar, open the prefab_allied_destructible_template.script file. Copy all the text, and
paste it into the tutorial.script file, at the bottom of the file. This is because we will name this section "gate",
and so that will be the right place alphabetically.

Replace all 5 instances of allied_destructible with gate.

Later on we'll add some speech but we'll skip that for now.

As the gate should be destroyable by dyna, change the constructible_class to 3.

As the script is simple I will explain what's happening as if we were writing it from scratch.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial28.htm[01.04.2009 23:32:54]

You start by declaring a procedure by entering its name. A procedure must be wholly enclosed by "{" and
"}".

So you would begin writing the procedure by typing:

gate

{

}

Within the procedure you can have as many blocks of script as you need. These blocks are called triggers.
There are several triggers with predefined names, such as spawn and death.

The spawn trigger is optional in any procedure. If included, it gets executed once-only, at the start of the
map. You should always put a small delay in at the start of a spawn trigger, to allow all the spawning
entities to arrive in the map before you might start trying to reference them.

First we'd add the spawn trigger. It is created inside the brackets of its parent procedure. I always add the
"{" and "}" immediately I create a new trigger, so I don't accidentally leave out a closing "}". If you do, it
can create some interesting errors when the map loads and you'll wonder what the hell is wrong.

gate

{

 spawn

 {

 }

}

We need a spawn trigger because we have to tell ET what weapons can destroy this destructible. So we add
this info to the spawn trigger, following a wait of 300 milliseconds. A number between 50 and 500 is usual,
with the choice being fairly random really. Two slashes "//" mean the rest of the line is just comments and
not script.

gate

{

 spawn

 {

 wait 300

 constructible_class 3 // 2=satchel 3=dyna

 }

}

We also need a death trigger, to tell ET what to do when the gate is destroyed. The death trigger is also
placed within the "{" and "}" of its parent gate procedure, not within the brackets of the spawn trigger.

gate

{

 spawn

 {

 wait 300

 constructible_class 3 // 2=satchel 3=dyna

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial28.htm[01.04.2009 23:32:54]

 }

 death

 {

 }

}

This is what we want to happen when the gate is destroyed:

Hide the original undamaged gate - this is automatically done and we don't have to script anything
Show the damaged gate bits - alertentity gate_bits : alertentity toggles the visibility of the gate_bits
entity, ie reveals it in this instance
Remove the "You are near..." prompt - trigger gate_toi remove : which means execute the remove
trigger in the gate_toi procedure
Tell the players that the gate has been blown up - wm_announce "The Allies have destroyed the
gate!"

gate

{

 spawn

 {

 wait 300

 constructible_class 3 // 2=satchel 3=dyna

 }

 death

 {

 alertentity gate_bits

 trigger gate_toi remove

 wm_announce "The Allies have destroyed the gate!"

 }

}

Finally we have to create a procedure for the trigger_objective_info entity, so that it can be removed when
the gate is destroyed.

gate

{

 spawn

 {

 wait 300

 constructible_class 3 // 2=satchel 3=dyna

 }

 death

 {

 alertentity gate_bits

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial28.htm[01.04.2009 23:32:54]

 trigger gate_toi remove

 wm_announce "The Allies have destroyed the gate!"

 }

}

gate_toi

{

 trigger remove

 {

 remove

 }

}

The trigger called "remove" is not a standard ET provision, so we have to show that it is a user-defined
trigger, ie made up by us, by prefixing it with the word "trigger".

The "remove" instruction within the trigger tells ET to delete this brush from the game as we no longer need
it at all - which is why we don't just hide it.

Save and close the script file.

Run ET and have fun destroying the gate :)

I'll get some Axis templates together for you shortly.

You may now have visions of making a map with dozens of constructibles and destructibles.
Unfortunately there is a limit of 18 trigger_objective_info entities in a map. And it's easier than you
might think to eat away at that total amount, as TOI entities get used for other main game elements

too. Consider Fueldump, and count the TOIs:

1. Tank
2. Ammo cabinet in the Allied shack
3. Allied MG42 outside the shack
4. Bridge
5. Footbridge
6. Axis CP
7. Axis MG42 tower overlooking bridge
8. Allied CP
9. Ammo cabinet near allied CP

10. Axis MG42 tower near allied CP
11. Allied MG42 near allied CP
12. West fence
13. East fence
14. Fuel dump

Next lesson

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial29.htm[01.04.2009 23:32:57]

ET Mapping Tutorial
Lesson 29

Topics

Forward Spawn Flags

Forward Spawn Flags

Scripting

Back to main menu

Forward Spawn Flags [Top]

These are quite easy to do, but you need to be careful with the script to make sure they will perform the
right way for the situation you want.

There are a few varieties of behaviour, such as:

 the flag is owned by no-one at the start
 the flag is owned by a team at the start but they can't spawn there
 the flag is owned by a team at the start and they can spawn there but it's not the default
when the flag is captured, it becomes the default spawn for the capturing team
when the flag is captured, it doesn't become the default spawn for the capturing team

All variations on a theme. The one I'll demonstrate is the flag owned by no-one, which will become the
default spawn for the capturing team. The losing team will then spawn back at their original spawn point.

Run Radiant and open the map. Don't forget to make backups from time to time.

We'll start by putting the flag down. In the 2D view, right click at the point shown and select
team/team_wolf_checkpoint.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial29.htm[01.04.2009 23:32:57]

In the side 2D view, move the entity until its bottom just about goes into the ground. Be aware that if you
put a flag on a rooftop, the rolled up flag of the losing team will appear below the bottom of the flagpole,
which might appear to be hanging from the ceiling of the room below...

Press N. Close the window and press N again.

Tick the spawnpoint box.

We need to provide a name for the entity so we can have a script procedure for it. Enter a targetname of
forward_flag and then a scriptname also of forward_flag.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial29.htm[01.04.2009 23:32:57]

The name can be anything of course, but we'll use forward_flag for now. This value is not shown to players.

Finally we need to tell the flag the names of the spawn locations that it is controlling: enter a target of
forward_spawns.

Ok, now we'll add the spawn points for both teams. We'll add just one of each to illustrate the technique -
but you would need to add 32 for each side.

Right-click in the 2D overhead view where you want the first allied soldier to arrive, and select
team/team_ctf_bluespawn. In the side view make sure the entity is on or just above the ground. For
irregular surfaces like terrain, make it just above, otherwise he'll start with his feet in the ground and not be
able to move.

Press N, and tick the invulnerable box. I think this may be redundant but what the heck. We won't tick
the startactive box because we don't want him spawning here yet.

Click on one of the 8 directional buttons at bottom left of the Entities window, to set the direction the player
will be looking in on spawning.

Enter a targetname of forward_spawns and close the entities window. If you have done everything right,
the flag will now have a line drawn to the blue spawn entity. Press ESC.

Now right-click in the 2D overhead view where you want the Axis soldier to spawn. If space is tight, the axis
spawns can overlap the allied spawns. Select team/team_ctf_redpawn and position it clear of the ground
and press N.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial29.htm[01.04.2009 23:32:57]

Now do the same things that you did for the blue spawn, that is, set the invulnerable box and give it the
same targetname, and any facing direction you want. Close the window and press ESC.

You should have a red line connecting the flag to the spawn.

Finally we need to add the command map marker entity to show where the flag is. Usually you put this over
the flag entity. So right-click on the flag entity in the overhead view and select
team/team_wolf_objective. Position the entity a little over the flag.

Press N. There has to be a default owner, even if really there is none. So tick the default_axis box. We'll
take care of the real situation in the script.

Enter a description of Forward Flag - this text will be shown on the command map. Enter a targetname
and scriptname of forward_wobj.

Close the window and press ESC. We have completed the mapping element.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial29.htm[01.04.2009 23:32:57]

Save the map and compile it. Don't run ET yet.

Scripting [Top]

Open tutorial.script, and enter the following script just before the gate procedure, as this procedure will start
with "F".

forward_flag

{

}

Then inside the curly brackets, put in the following text. I suggest you cut and paste it from here, but you
ought to add the indentation manually so you can see where everything belongs:

spawn

{

accum 0 set 2 // Who owns flag: 0-Axis, 1-Allied, 2-Nobody

}

trigger axis_capture // Touched by an Axis player

{

accum 0 abort_if_equal 0 // do Axis own flag?

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial29.htm[01.04.2009 23:32:57]

accum 0 trigger_if_equal 1 forward_flag axis_reclaim // Reclaimed from Allies

accum 0 set 0 // Axis own the flag

wm_announce "Axis have captured the Forward Flag!"

setstate forward_wobj default

}

trigger axis_reclaim

{

alertentity forward_wobj // Switch command map marker

}

trigger allied_capture // Touched by an allied player

{

accum 0 abort_if_equal 1 // do Allies own flag?

accum 0 set 1 // Allied own the flag

wm_announce "Allies have captured the Forward Flag!"

setstate forward_wobj default

alertentity forward_wobj // Switch command map marker

}

It should look like this in layout:

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial29.htm[01.04.2009 23:32:57]

Finally you'll need to add this line into your game_manager procedure (so that the flag doesn't initially show
on the command map)

setstate forward_wobj invisible

...and change the autospawn locations to "Forward Flag" so that both teams will automatically spawn at the
forward flag, if it is available to them. If not, the players will spawn back at the original spawn.

So your game_manager ought to look like:

You can now have a go in ET and delight in your forward spawning opportunities :)

You may find the flying flag is a bit dark. You can either add a little light entity over or near it, or
experiment with changing the direction the flag flies in - just set the angle of the team_wolf_checkpoint
(flag entity).

If you are not interested in what the script is doing, skip to the next lesson now. Otherwise keep reading, as
this starts to get us into the scripting fundamentals.

Explanation of the script

On game start, the flag's spawn trigger is executed. It sets accum 0 to 2. An "accum" (short for
accumulator, a term used in assembly programming) is a variable, in which you can store integers.

Each procedure can use up to 10 accums, numbered 0 to 9. The values stored in these procedural
accums are not accessible to other procedures. If you need to have values accessible across
procedures, you use a globalaccum which are also numbered 0 to 9. A map can only have a

maximum of 10 globalaccums.

Accum 0 is used by this procedure to indicate the condition that the flag is in, ie who owns it. It uses the
value 2 to indicate "no owner".

The allied_capture and axis_capture triggers are predefined names, and the relevant trigger is executed
when a player touches the flag (even if his team already own the flag).

We'll look at allied_capture first:

When an allied soldier touches the flag, the trigger is executed. The first thing it does is check the value of
accum 0.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial29.htm[01.04.2009 23:32:57]

If the value in accum 0 is 1 it indicates that the allies already own the flag, so the code is aborted and
nothing else happens.

Otherwise the allies have captured the flag, so accum 0 is set to 1 to record this.

Then the wm_announce is executed to tell the players about this event.

Now that the flag has been captured, the allies can spawn at it, so it must appear on the command map:
setstate forward_wobj default means makes the command map icon visible.

Finally, alertentity forward_wobj toggles the owner of the spawnpoint, from Axis to Allied.

Now look at axis_capture.

When an axis soldier touches the flag, the trigger is executed. The first thing it does is check the value of
accum 0.

If the value in accum 0 is 0 it indicates that the axis already own the flag, so the code is aborted and
nothing else happens.

Then it checks to see if the flag was previously owned by Allies - this will always be the case after the allies
have captured the flag for the first time. But if the allies are yet to capture the flag, the default_axis
setting means the axis are deemed to already be the owners, so we wouldn't want to toggle the owner away.

So if the allies were the owners, the trigger axis_reclaim trigger is executed (this is a routine I created, not
an ET pre-supplied one). Its function is just to toggle the owner back to axis.

Then just like the allied routine, the new owner is recorded, an announcement made, and the command map
icon made visible.

That's it.

Next lesson

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial30.htm[01.04.2009 23:32:58]

ET Mapping Tutorial
Lesson 30

Topics

Water

Water

Back to main menu

Water [Top]

Run Radiant and open the map.

Unlike the usual setup, in which players run around in the volume space between all the brushes of your
map, with water, players splash/swim about inside the brush.

To illustrate this, we'll flood one end of the little building we've made.

Block off one end of the room by making a low wall as shown. It's caulked and been made Detail, and had
some brick texture applied.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial30.htm[01.04.2009 23:32:58]

Then create a brush that is just a little bit lower than this new wall, but has edges that extend a little way
into the floor and into the surrounding walls, rather than meeting them flush. Use grid scale 4 to do this. I
have filtered models to make the view clearer. See how the brush goes into its surrounding walls (and the
ground, not visible in the overhead view).

Click textures/liquids/liquids_sd and select the siwa_waternodraw to texture the whole brush. Then
select just the surface face of the brush and apply siwa_water. Then press ESC.

Only the surface needs to be visibly textured with water, the other faces won't be visible, but they can't just
be caulk etc, they have to be a water-type shader; the siwa_waternodraw will do fine.

Save and compile the map, and go and splash around in it in ET. If it were deeper you would be able to

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial30.htm[01.04.2009 23:32:58]

swim in it.

Next lesson

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial31.htm[01.04.2009 23:32:59]

ET Mapping Tutorial
Lesson 31

Topics

Team speech

Adding speech to the script

Adding data to the sounds file

Back to main menu

Adding speech to the script [Top]

To get speech to be broadcast to each team, like "Build the Command Post!", takes two elements: something
in the script, and something in the sounds file. We'll address the scripting element first.

Open tutorial.script.

To make speech that is heard by all the players in a team, you use the wm_teamvoiceannounce
instruction.

We'll add speech that tells the allies to blow up the main gate, and the axis to prevent this.

Add these 2 lines to the end of the spawn trigger in the game_manager procedure:

wm_teamvoiceannounce 0 "radar_axis_entrance1_stop"
wm_teamvoiceannounce 1 "radar_allies_entrance1_destroy"

The "0" means that the Axis team will hear the speech; the "1" means the Allies will hear it.

The use of the word "radar" indicates that the speech comes from the Radar map. Generally you use "axis"
in the speech name so that it is clear to you that the speech is with a german accent, and similarly you use
"allies" for american speech.

"entrance1_destroy" and "entrance1_stop" then make it clear what the speech says.

The "radar_axis_entrance1_stop" tells ET to look up this reference in the sounds file, and play the WAV
associated with it. Same for "radar_allies_entrance1_destroy".

As soon as the wm_teamvoiceannounce instruction is executed, the speech is queued up to be spoken,
that is, if there is already speech being spoken, they won't shout each other down or interrupt each other,
they just queue up.

But you will sometimes want certain speech to be spoken as soon as a player joins a team, even if it is after
the start of the game.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial31.htm[01.04.2009 23:32:59]

So add these lines after the other two:

wm_addteamvoiceannounce 0 "radar_axis_entrance1_stop"
wm_addteamvoiceannounce 1 "radar_allies_entrance1_destroy"

wm_addteamvoiceannounce means "don't speak this now, but speak it to any players who join the team
later".

The last bits to go into the script are the instructions to stop telling newly arrived players to destroy the main
gate, if the main gate has already been destroyed.

Add these lines to the gate procedure at the end of the death trigger:

wm_removeteamvoiceannounce 0 "radar_axis_entrance1_stop"
wm_removeteamvoiceannounce 1 "radar_allies_entrance1_destroy"

When the gate is destroyed, and its "death" trigger is executed, ET will now remove these speech elements
from the list of speeches to play to newly arriving players.

Adding data to the sounds file [Top]

You will need to create a folder called scripts inside the etmain/sounds folder, if it isn't already there.

Now create a text file called etmain/sounds/scripts/tutorial.sounds.

Add this text to the new file:

radar_allies_entrance1_destroy

{

 sound sound/vo/radar/allies/hq_entrance1dyn.wav

 voice

 streaming

}

radar_axis_entrance1_stop

{

 sound sound/vo/radar/axis/hq_entrance1stop.wav

 voice

 streaming

}

As you can see, you will need a definition with the same name as that specified in each
wm_teamvoiceannounce instruction.

The sound line tells ET which WAV to play.

It is always voice and streaming. If you have additional sound lines then ET will play one or the other,
giving you some variety in intonation.

You can look into the .sounds files of other maps to get ideas for the sort of speech other people have used -
the WAVs don't have to be those that came with ET; you can create your own WAVs and have them spoken
in just the same way.

I prefer not to put on a fake german accent for the speech I need, if there isn't one already supplied by ET -
instead I found it better to cut up existing WAVs using a WAV editor and then put the words together in the

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial31.htm[01.04.2009 23:32:59]

construct that I wanted. For 2tanks I had to assemble 53 new WAV files for the various team speech, and it
was all done by using words lifted from the various standard ET maps.

With the script and sounds files now ready, you can run ET and you should hear the "destroy the main
entrance" etc on arrival - but not after the gate has been blown up.

Next lesson

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial32.htm[01.04.2009 23:33:01]

ET Mapping Tutorial
Lesson 32

Topics

Limbo camera and objectives narrative

Placing limbo cameras

Scripting the objectives

Writing the objective descriptions

Back to main menu

Placing limbo cameras [Top]

We've reached the final set of lessons needed to reach the point where you can create and distribute a fully
operational PK3.

This lesson covers the use of limbo cameras, which are the little (dynamic) images that accompany the
objectives text on the limbo screen. With the views, those blocks of text, and the tickes and crosses you can
superimpose on them, this part of the limbo screen tells the players what to do, the order to do it in and
roughly where to do it.

I'm not actually sure how many players ever look at this information, whether they are brand new to the map
and could use the instructions, or whether they are familiar with the map and need to know which objectives
have been accomplished - but you have to provide this information or you get some ugly default views in the
limbo camera section.

The components to providing limbo camera information are:

the limbo cameras placed in the map
the script which associates each camera to an objective
the script which dynamically puts ticks and crosses on the objective text
the descriptive text which accompanies the views

We'll start with the camera placement.

Run Radiant and open the map.

You are limited to 8 objectives. Along with the general introduction limbo camera view, this gives
you a total of 9 limbo cameras available to you.

We will place 2 cameras and assume there is one objective - for the allies to destroy the main gate.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial32.htm[01.04.2009 23:33:01]

The first camera will show the general view which introduces the map. In the 3D view, place the view where
you want the camera to be looking from, and aim the view in the direction you want it to be looking in.

In the 2D view, position the overhead view so you can see the little blue eyeball indicator. I've picked a
general view, just above the roof height, that offers a far view of the gate.

Right-click just in front of the eyeball and select info/info_limbo_camera.

Now in the 2D view, adjust the height of the camera until it is just in front of the view in 3D.

Press N.

Enter objective and give it a value of 0.

Enter target and a value of limbo0.

Press ESC.

We must now place an indicator over in front of the gate to tell the camera what to look at.

Right-click in front of the gate and select info/info_notnull.

In the side view, move the info_notnull to a height about the middle of the gate.

Press N.

Enter targetname with a value of limbo0.

If you have done this correctly, the camera will now join to the info_notnull with a green line.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial32.htm[01.04.2009 23:33:01]

Press ESC.

Now we'll place the second camera - it will show a close-up view of the objective, ie the gate. Get a close
view in 3D and place and position another limbo camera entity as you did before.

Press N.

Enter objective and give it a value of 1. This is the first of a possible 8 objectives.

Enter target and a value of limbo1.

Press ESC.

Place another info_notnull in front of the gate.

Press N.

Enter targetname with a value of limbo1.

If you have done this correctly, the camera will now join to the info_notnull with a green line.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial32.htm[01.04.2009 23:33:01]

Save and compile the map. Don't run ET yet.

Remember that these are dynamic cameras, and will show the view at the moment the player is looking at
it. Bear that in mind if your view looks wrong or inappropriate if the game circumstances change. Don't
worry too much though, as I said, I doubt many people look at them :(

Scripting the objectives [Top]

Open etmain/maps/tutorial.script.

Add this line into the game_manager spawn trigger, after the line wm_set_round_timelimit

wm_number_of_objectives 1

This number will be a value between 1 and 8, depending on the number of declared objectives. You can have
more than 8 objectives, but you can only have limbo cameras for 8 of them.

Add these lines into the same trigger, after the wait 500:

// Objectives
// 1 Primary Objective: Allies destroy main entrance

These are just comments, to help remind you what the following instructions are actually referring to.

Add these lines below those just entered:

// obj nbr, team, status (0=none, 1=passed, 2=failed)
wm_objective_status 1 0 0
wm_objective_status 1 1 0

These lines set the starting conditions for each objective. You would have 1 pair of these lines per objective.
This is what the lines mean:

wm_objective_status 1 0 0 The instruction that sets the status for an objective

wm_objective_status 1 0 0 The objective number

wm_objective_status 1 0 0 The team number - 0=axis 1=allies

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial32.htm[01.04.2009 23:33:01]

wm_objective_status 1 0 0 The status - 0=unmarked 1=ticked 2=crossed

Fiinally add these lines to the gate death trigger, it doesn't matter where precisely:

wm_objective_status 1 0 2
wm_objective_status 1 1 1

So when the gate is blown, the axis objective is marked with a cross, and the allied with a tick. If the
objective you were marking in this way were say a flag, which could be expected to switch back and forth,
you can repeatedly set the objective status to show a team a tick, then a cross, then a tick, etc.

That's the end of the script changes. To finish we now just need to create the text to go with the limbo
views.

Writing the objective descriptions [Top]

The descriptions are written in a new text file.

Create a text file called etmain/maps/tutorial.objdata.

Edit the tutorial.objdata file, and add these lines to it:

// Set scenario information

wm_mapdescription allied "Destroy the main entrance!**Run through the opening and laugh madly!"

wm_mapdescription axis "Don't let them destroy the main entrance!"

wm_mapdescription neutral "The Allies must blow the main gate."

// Axis Objective Descriptions

wm_objective_axis_desc 1 "Primary Objective:**Don't let them destroy the main entrance.**This will lose
the forward bunker and give them access to the factory."

// Allied Objective Descriptions

wm_objective_allied_desc 1 "Primary Objective:**Destroy the main entrance.**This will capture the forward
bunker and give you access to the factory."

The first three lines of text give the general map objectives display to spectators, axis players and allied
players, before they look at any of the objective limbo camera views. In limbo this will appear as objective 1
of 2.

The axis and allied specific descriptions are numbered 1, and you'd have one line per objective, obviously
numbered 2, 3, 4, etc. Make sure these match up with what you do in the script! I have used the text from
110 Factory to illustrate the sort of thing you might put.

Generally you should make Primary Objective those objectives that are critical to game success, and the
others merely Secondary Objective.

You can use * to force a new line, and ** to force a new paragraph.

Run ET and revel in your limbo views and objective text :)

You'll most likely find that some views are slightly wrong or poorly illuminated, so it is an iterative exercise of
tweaking camera positions until you are happy with all of them.

Next lesson

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial33.htm[01.04.2009 23:33:02]

ET Mapping Tutorial
Lesson 33

Topics

Making the game end

Making the game end

Back to main menu

Making the game end [Top]

The map will end when a winning team has been specified in the script, and the game ending conditions have
been met.

The instruction wm_setwinner is used to specify the winning team:

-1 = No winning team specified yet
0 = Axis win
1 = Allies win

In the tutorial script, we have set wm_setwinner to 0 right at the start, so that if the game time expires, Axis
will win.

What we will do is add some script to make the allies win if they blow the gate.

Open the tutorial.script file, and add this line at the end of the gate death trigger:

trigger game_manager allies_win

So when the gate is blown up, the last thing the death trigger does is call (execute) the allies_win trigger in
the game_manager procedure.

Add this script after the closing "}" of the spawn trigger in the game_manager procedure, but before the
closing "}" of the game_manager itself.:

trigger allies_win

{

wm_announce "The Allies blew up the gate!"

wm_setwinner 1

wait 3000

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial33.htm[01.04.2009 23:33:02]

wm_endround

}

So if the allies succeed, an announcement is made, wm_setwinner is changed to 1, a 3 second delay to give
people time to see it, and then the wm_endround instruction is executed, which forces the game to end
now.

As you can see, there is no provision for a draw: wm_setwinner is either 0 or 1 when the game ends. If the
timer expires and wm_setwinner is -1, then the game continues until you set it to 0 or 1, at which time the
game immediately ends.

Next lesson

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial34.htm[01.04.2009 23:33:03]

ET Mapping Tutorial
Lesson 34

Topics

Generating a tracemap

Generating a tracemap

Back to main menu

Generating a tracemap [Top]

A tracemap is not strictly necessary, which is why sometimes the mapper omits one and you might notice an
error like "tracemap not found" fly past in all the loading text before the map starts.

But really you should do one. A tracemap is generated by ET when in developer mode, and once generated,
it can be used to tell ET about the contours and geography of the map so that it knows how to apply weather
effects.

Without a tracemap, if you made your map snow, the snow would fall into the buildings.

Run ET, and run your map.

Once the warmup has ended, bring up the console and type:

\developer 1
\generatetracemap

You'll then see a lot of lines telling you how the generation is progressing. When it's all finished, type in:

\developer 0

Don't worry about other sundry messages that might get displayed, they don't matter. You can quit ET again
now.

The tracemap file will actually come in handy for the next lesson, which is Making a Command Map...

Next lesson

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial35.htm[01.04.2009 23:33:04]

ET Mapping Tutorial
Lesson 35

Topics

Making the command map

Making the command map

Back to main menu

Making the command map [Top]

You'll need an image editor for this.

First of all though, we'll create a new shader file which is also required.

Create a text file: etmain/scripts/tutorial_levelshots.shader

Put these lines in it:

levelshots/tutorial_cc_automap

{

nopicmip

nocompress

nomipmaps

 {

clampmap levelshots/tutorial_cc.tga

depthFunc equal

rgbGen identity

 }

}

levelshots/tutorial_cc_trans

{

nopicmip

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial35.htm[01.04.2009 23:33:04]

nocompress

nomipmaps

{

clampmap levelshots/tutorial_cc.tga

blendfunc blend

rgbGen identity

alphaGen vertex

 }

}

When making this file for your own maps, change all instances of "tutorial" to whatever map name you are
using.

I use Paint Shop Pro for image editing, so I will explain the next step using that tool. Your own image editor
will no doubt offer the same features but maybe under different names.

Run PSP or equivalent.

Open tutorial_tracemap.tga which will be in the maps folder.

This is what mine looks like:

You can see the building and the wall on the slab, and the rest is pretty much smudgy.

We want to split the image into its 3 constituent RGB (Red/Green/Blue) channels - one of which might give us
a better picture.

In PSP, click colors/split channel/split to RGB

You get 3 new images. Discard the 2 most useless ones, and keep the clearest. I'm using:

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial35.htm[01.04.2009 23:33:04]

The image is 256*256 - expand it to 512*512 (don't just zoom in, actually make the image bigger). Also
increase the colour depth to 24 bit, ie around 16 million colours.

Using picture editing tools, tidy up the image to remove little grey specks (eg the fence posts, CP, ramp
boxes, etc).

Then you should try to improve the look of it. I will give it a greeny colour, other than the buildings. So I
select the buildings, invert the selection (to select everything else) and colorize it to a shade of green.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial35.htm[01.04.2009 23:33:04]

Then I apply a contour function, to make the green area look like a paper map.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial35.htm[01.04.2009 23:33:04]

Then I fill in some of the areas with better colours:

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial35.htm[01.04.2009 23:33:04]

Finally I perform a blur function to soften the edges of the contours.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial35.htm[01.04.2009 23:33:04]

If you want to add writing (bear in mind there will be icons and marker text put onto the map in ET) you
should create new layers and put the text onto them. Then if you want to change/move the text later on,
you can. You won't be able to if you've put the text straight onto the map image.

There are many graphical effects you could employ to make the map more stylish and interesting - it's up to
you, your imagination and your patience.

Save the file to a PSP format (to retain the layers info) then save a copy of it to
etmain/levelshots/tutorial_cc.tga - make sure the file is saved as a TGA type. Always work on the PSP
version and save revised copies to the TGA version.

Run ET and run the map - you should see your own command map :)

Next lesson

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial36.htm[01.04.2009 23:33:05]

ET Mapping Tutorial
Lesson 36

Topics

Making the picture to be shown while the map loads

Making the picture to be shown while the map loads

Back to main menu

Making the picture to be shown while
the map loads

[Top]

Either source an image that you want to use, or more commonly, take an in-game screenshot (F11).

If you took a screenshot, the image will be in etmain/screenshots.

Run your image editor, I'm using Paint Shop Pro.

Open the required image file. A screenshot is likely to be too dark; if so, increase the brightness and the
contrast until the image is good.

Then crop to focus on the relevant bit, and resize/crop again to 341*256. Then resize to 256*256 - you will
need to turn off the usual feature that aspect ratios be maintained during a resizing.

If you want the image to be black and white, convert it to greyscale. Likewise, if you want to put text onto
it, create new layers for the text.

Save the image as a PSP type (or the file type native to your editor) or you will lose the layer information,
making later rework hard or impossible.

If you want the image to look like a crooked old photograph, like the original ET map images, resize to
232*232 and enlarge the canvas (not resize) to give you some whitespace around the image. Select the
232*232 image in the centre and rotate 1 degree to the left.

Use Pakscape (the link is in lesson 10) to open etmain/levelshots/battery.tga with your image editor, then
copy the 232*232 rotated image over the top of it - it should fit nicely within the white photo borders, and
the surrounding black area is already marked out as a transparent area using the alpha channel. In other
words, you don't have to worry about creating a transparency mask, as it is already present in the
battery.tga.

Now save the image as etmain/levelshots/tutorial.tga.

Run ET and admire your photo as the map loads...

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial36.htm[01.04.2009 23:33:05]

Next lesson

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial37.htm[01.04.2009 23:33:06]

ET Mapping Tutorial
Lesson 37

Topics

Making a PK3 file

Making a PK3 file

Back to main menu

Making a PK3 file [Top]

Wow, just 37 lessons later and the survivors among you are ready to make your first PK3 file, so you can
publish your map to the gaming community.

This is probably a good time to mention that not everyone will love or appreciate the couple of hundred hours
of effort you put in. Despite being generally well received, I've had "This map is crap" from somebody or
other for all of the maps I've made. You can't please everyone all of the time, so develop a thick skin now...

Your PK3 must contain all of the material that doesn't come as standard with the regular ET installation.

If you miss any components, either your map won't load/run properly, or the players will see the ugly
yellow/black "missing texture" squares.

Run Pakscape (link is in lesson 10), click File/New

Create these folders (substitute tutorial for your map name):

levelshots
maps
maps/tutorial
scripts
sound
sound/maps
sound/scripts
textures
textures/tutorial

Now we need to import all the required files into the appropriate pakscape folders. Be sure that you have
removed any testing aids you added in the script, at least by commenting them out (eg, you may have
shortened the respawn time, lengthed the map time or included "wm_announces" to tell you when things are
happening).

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial37.htm[01.04.2009 23:33:06]

Click on levelshots and then right-click in the right-hand pane, and select object/import file. Navigate to
etmain/levelshots and select tutorial.tga and tutorial_cc.tga and click Open to import them.

Click on maps and import from etmain/maps these files: tutorial.bsp, tutorial.objdata, tutorial.script
and tutorial_tracemap.tga.

Then right-click again in the same pane and select object/import directory and select the
etmain/maps/tutorial folder to import it and its contents (a load of files named lm_0000.tga, lm_0001.tga,
etc). The number of files will depend on the size/shape of your map.

Click on scripts and import from etmain/scripts these files: tutorial.arena, tutorial.shader and
tutorial_levelshots.shader.

Click on sound/maps and import etmain/sound/maps/tutorial.sps.

Click on sound/scripts and import etmain/sound/scripts/tutorial.sounds.

Click on textures/tutorial and import any bespoke textures files from the etmain/textures/tutorial folder.

If you are using a skybox, import the skybox folder and its contents also into the textures/tutorial
pakscape folder.

Create a readme.txt file in Wordpad or similar, copying the style of an existing one from another pk3. Then
import it into pakscape at the root level.

Here's an image of the glider.pk3 contents as an example of how yours might look. There are additional
folders than those we've covered, as there are components included that have not been covered in the
tutorial thus far. I had allied and axis specific bespoke sounds in glider, hence the presence of allied and
axis folders within the glider folder.

Save the file - I use a file naming convention that includes the map version. This helps people identify when
new versions have come out, and also allows players to play different versions on different servers without
perpetually having to download one version over the top of another.

So I would suggest calling version 1 either tutorial1.pk3 or tutorial_100.pk3 (I use v1.0.0 syntax for version
naming).

You should now test the PK3 in your etmain folder. If you see horrible random shadows all over the place, it
generally means you haven't properly included the etmain/maps/tutorial tga files contents.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial37.htm[01.04.2009 23:33:06]

Be sure to remove the pk3 from etmain before any Radiant reworking - if you forget, when you attempt to
test your changes ET will instead still load the old pk3 version.

If you can, test your PK3 on a different computer, preferably one with a vanilla installation of ET, to highlight
any omissions you may have made.

Your map is now publishable. The lessons to follow are optional, and rather more complicated, and only
needed if you want to get on to more sophisticated elements such as tanks and fancy terrain merging shaders
etc.

Next lesson

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial38.htm[01.04.2009 23:33:09]

ET Mapping Tutorial
Lesson 38

Topics

The Tank

Creating the Tank

Plotting the route

Making a tank barrier

Writing the script

Back to main menu

Creating the Tank [Top]

The tank is the biggest single element that you definitely don't want to create from scratch. The Jagdpanther
I first used was taken from the sample Goldrush map supplied by Radiant. It took some time to even
recognize some of the tank components as being tank components, especially those that the author didn't
happen to put immediately adjacent to the tank. It took even longer to understand what the sizeable script
was doing and rework it to do what I wanted.

So to save you a lot of time and grief, I have made a self-contained map (we won't be using the tutorial map
for this) and script, which includes a fully operational tank and tank barrier. I will explain all the components
so that you can get them working in your own map. I have rationalized and re-ordered the script
components (eg arranged them alphabetically, improved the comments, re-coded some elements for clarity)
in an effort to make the scripting side as easy as possible. Note that even this minimal example tank script
is 715 lines long - happily you only need to understand a fraction of it to make it work for you. :)

Download the tank.zip file and put the tank.map and tank.script in your etmain/maps folder.

Run Radiant and open tank.map. You will see the tank (smothered in trigger boxes), which is repairable by
the allies, and a barrier, which is constructible by the axis.

If you want to immediately see what the tank will do in this sample map, compile it and have a go in ET.
You should build the barrier, mend the tank and drive it to the barrier, destroy the barrier and then escort
the tank (in an oval route back to the start) until it stops and fires the gun. Then come back to Radiant.

Hide the ceiling brush, it will make examining the tank easier. We'll look at each component - get a 3D view
that shows all the tank elements, like this:

http://www.pythononline.co.uk/et/tutorial/tank.zip

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial38.htm[01.04.2009 23:33:09]

Note that it doesn't matter where the tank or any of its components is actually placed in the map - it will be
immediately placed on the first point of the route it will follow, when the map starts.

Use shift+alt+click to select the largest trigger box. We need to use shift+alt+click quite a bit because many
of these components have origin brushes inside and we want to include them when we examine and hide
each element.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial38.htm[01.04.2009 23:33:09]

Press N, close the window, press N again.

This is the tank_trigger - when an allied soldier stands within it, the tank is enabled to move
(notwithstanding other reasons why it can't, such as damage or a barrier).

Just use a regular mouse click on the 3D pane and press H to hide the trigger while leaving the entities
window open, and shift+alt+click the remaining big trigger box. We'll use the same technique for selecting
and hiding each component.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial38.htm[01.04.2009 23:33:09]

The tank_build trigger is used to allow allied engineers to repair the tank.

As this tank is to be esorted by the Allies, the allied_objective box is ticked.

The shortname will be shown on the command map.

infoAxis, infoAllied and override are redundant, and have never been changed since their use in Goldrush.

The track is shown along with "You are near".

This trigger is actually associated, via the target, to a func_constructible called tank_construct. To the
player it appears that the plier-waving is for the tank, when in fact there is an invisible box in the air (the
nodraw non-solid yellow box) which he is repairing (because the tank is not a func_constructible).

The customimages tell ET which icon to show on the command map.

Hide the trigger and shift+alt+click the yellow box.

It's shown as a func_constructible. The health is a dummy value and doesn't matter what it is. The tank's
health will be specified elsewhere.

Hide it, and shift+alt+click the tank brushes.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial38.htm[01.04.2009 23:33:09]

This is the principal tank component. It is a script_mover collection of brushes, because the brushes have
to be capable of movement. The brushes are all clip weapon metal textured, to make the bullet ping sound
when shot.

By default, script_movers are non-solid, so that players would pass through them; so the solid box is ticked.

We only want explosives to harm this script_mover, so the explosivedamageonly box is ticked.

When the script_mover is destroyed, we want it to be able to start again with full health, so the
resurectable box is ticked.

It should appear on the compass, and it can only be destroyed by the axis, so the allied box is ticked. Yes,
a bit odd. Think of it as an allied tank.

The tank has a mounted_gun.

The model2 specifies that this tank-shaped collection of brushes should actually be visible as the jagdpanther
tracks, which is a model.

The health is 1200 which is the standard tank health value.

The description is what is shown when the player looks at the tank and sees its health bar.

The tagent is used to tell ET where the player using the mounted gun should sit, ie in another entity called
the tank_shell.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial38.htm[01.04.2009 23:33:09]

Hide it and select the tank model:

This is the tank_shell, ie the hull of the tank. The model sits on the tracks. Hide it and select the gun
barrel.

The tank turret is a separate entity, as it has to be able to turn to the side. Hide it and select the yellow
target_script_trigger on the left.

This is the tank_trigger target_script_trigger. It tells ET which script element to run when someone stands
near the tank. Hide it and select the mauve func_timer box.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial38.htm[01.04.2009 23:33:09]

This is a timer, which executes every second (wait = 1). Each time it executes, it causes the script element
specified in the yellow target_script_trigger shown on its right, to run. Its purpose is to halt the tank if no-
one has been near it for a few seconds. Hide it and select the yellow box.

You can see this is the tank_disabler. Hide it and select the big red box on the left.

This is the smoke to be shown when the tank is damaged. It will show black smoke. Hide it and select the
gun flash model. You will probably need to view the model from the back to select it.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial38.htm[01.04.2009 23:33:09]

This is shown for a moment at the gun tip when the gun fires. Hide it and select the big red box next to it.

This is something I've added. I thought it would be nice to have a puff of smoke at the tip of the gun barrel
when it fires, so I added this smoke entity and called it tank_gunsmoke. Hide it and select the little green
box.

This is just a placeholder entity to allow the script to manipulate sounds associated with the tank. It gives
the script a named procedure it can use, called tank_sound.

Hide it and select the last red box. This is a sound entity. I used a different noise to the usual - I don't
remember why now, it was while I was getting 2 tanks to work in the 2tanks map - so you could put this
back to the standard gunfire sound: sound/vehicles/tank/tank_fire.wav

Unhide everything again. That completes the examination of all the parts that make up the tank.

Plotting the route [Top]

You control where the tank goes by plotting a route for it. Select the green box near the front of the tank.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial38.htm[01.04.2009 23:33:09]

The boxes are splines, an entity called info_train_spline_main. Each spline points to the next spline along
the track, by using the target key.

I have made an oval circuit. Normally the splines define a winding route, not a circuit, and the last spline
does not have a target key, as there is no next spline.

The origin of the tank tracks will follow the origins of the splines.

When you're making the route, the easiest way is to copy the last spline in the track so far, move it into
place, and rename its targetname and target. Repeat as necessary.

These example splines are actually too far apart. As a rule of thumb, they should be about 3 intersections
apart at grid scale 7. This is because when the tank is damaged, it won't actually halt and smoke until it
reaches the next spline. If you put them too far apart, a wrecked tank will go on too far.

The pink boxes are info_train_spline_controls, and they are used to smooth the turning from one spline to
the next. Without them, the tank will turn quite abruptly. Don't add them until you've laid out your route
with some confidence that it won't change, because re-doing the spline controls is really tiresome and best
avoided - so leave them to last.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial38.htm[01.04.2009 23:33:09]

Select one and press N - you will see the only thing of interest is its name. I name them with the same
name as the spline they are controlling, plus "_c". Select a spline, like one of those at the pointy end of the
circuit, and press N. You will see it has a control key. Splines only need a control key when you decide the
tank movement from this spline to the next needs smoothing.

In the picture above, the centre spline leads diagonally up to the left to the next spline. It has a control, the
pink box to the left. So the tank won't go straight along the green arrow, it will bow out towards the pink
box and then back to the target spline.

This is best seen when you activate the plot splines feature. Click this button:
Nothing seems to happen. Press ESC.

This shows with the white line, the path that the tank will actually follow. Handy to spot lumpy plots that
need smoothing out with control splines.

Making a tank barrier [Top]

I have put a fairly standard tank barrier in this map - it's just a func_constructible, like any other. This one
has been made an axis constructible. It's the script that will make the tank react to the barrier - without the
script barrier detection, the tank would otherwise just drive straight through it.

Writing the script [Top]

Open the tank.script with Wordpad or similar. I've arranged the scripting elements alphabetically. I'll explain
just those elements of note or those you'll need to amend to make the tank script work in your own map.

Look at the barrier procedure. There are a number of teamvoiceannounce commands - remember you will
need to include their definition in your etmain/sounds/scripts/<yourmapname>.sounds file. You can
copy them straight out of the goldrush.sounds file.

If you made the barrier an explicit objective, you'd need to add a limbo camera and the objective
ticking/crossing code.

Scroll down to the tank procedure.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial38.htm[01.04.2009 23:33:09]

All the accum comments are pretty much what came with the goldrush script, and you can more or less
ignore them until you get more proficient with scripting.

Scroll down to see each of the next sections as they get described:

spawn : (for your info) This puts the tank onto the start of the route, and gets it facing the right way (ie the
way to go from spln0 to spln1) by running the tank forwards and then backwards along the first spline.

followspline 0 spln0 50000 length 32 wait Move the tank along a spline route

followspline 0 spln0 50000 length 32 wait
Go forwards along this spline. 1 means go to the next
spline and move backwards to this one.

followspline 0 spln0 50000 length 32 wait Identifies the spline to follow.

followspline 0 spln0 50000 length 32 wait

The speed to move at. Normally speeds are 50-80. 50
is the speed used in Goldrush. 80 is used in
Fueldump. 50000 is extremely fast and is used just for
positioning at game start.

followspline 0 spln0 50000 length 32 wait
Tells ET that the tank origin is not at its actual centre,
and to compensate for this during turning.

followspline 0 spln0 50000 length 32 wait
Tells ET to wait until the movement is completed
before executing the next script line.

Scroll down to trigger dispatch.

You'll need one of these lines per spline. Make sure the numbers match, eg accum 3 trigger_if_equal 7 tank
run_7

Scroll down to trigger run_0.

You'll need one like this for each normal spline, ie a spline that isn't the last spline or a point at which a
barrier may impede tank progress. Change run_0 to run_<the next number>. Changle spln0 to spln<the
next number>.

Look at trigger run_3.

If the tank starts along spline 3, it means it has passed the barrier - so remove the barrier.

Look at trigger run_7.

This would be your last spline. You can see the tracks stop, the engine stops, the tank shudders to a stop
(the animations) and then the turret will turn to fire. If you don't want the tank turret to turn and fire,
delete the line trigger tank_turret turn.

Scroll down to trigger stuck_check_finished.

The 8 is the value of the last spln number + 1. Change it to your last spln number + 1.

Scroll down to trigger stuck_check_barrier

The abort_if_not_equal 3 is being compared to the spln number in front of the barrier, ie the point at which
the tank should stop if the barrier is built. Change the 3 to wherever your barrier is. If you have more than
one barrier, clone the trigger stuck_check_barrier procedure with a different name, and set the
abort_if_not_equal value accordingly. You'll also need to clone the line trigger self stuck_check_barrier
into the name of the new procedure, in the trigger stuck_check routine.

You can ignore the rest of the script, it will work just fine as it is.

Now go play with your tank - experiment with changing the route and get the hang of control splines.

Next lesson - not yet ready.

PythonOnline

http://www.pythononline.co.uk/uk/index.asp[01.04.2009 23:33:11]

Home
Making websites for small businesses

Home About us Our services Our customers Contact us

We are a small website-development company,
specialising in providing a personal service at affordable
prices.

On your behalf we register your domain name and organize
the hosting of your new website with the UK's largest web
hosting company. We then design and create a professional
custom website to meet your needs. In addition we can
provide graphic design for your corporate identity to
complement the style of the website.

You are welcome to contact us to chat about your
requirement, even if you are not quite sure what it is! We
avoid tech-speak and talk in plain English to make the
whole process straightforward for both parties.

PythonOnline

http://www.pythononline.co.uk/uk/about.asp[01.04.2009 23:33:12]

About us

PythonOnline's principal website developer is Simon, who has over 30 years' experience in
designing and programming a variety of computer applications. He has worked in senior
programming, project-leading and consultancy roles for a number of corporations and major
companies including Lloyds Bank, Nat West Bank, HSBC, SocGen Bank, British Telecom and
Logica Systems. Simon also spent some years as a director of a small software house developing
applications for treasury and dealing systems of international banks.

Simon has been developing websites for small businesses since 2001, and understands the
advantages in discussing the projects with clients using plain English instead of baffling
technical terms.

Making websites for small businesses

Home About us Our services Our customers Contact us

http://www.pythononline.co.uk/uk/cv.asp
http://validator.w3.org/check?uri=www.pythononline.co.uk%2Fuk%2Fabout.asp
http://validator.w3.org/check?uri=www.pythononline.co.uk%2Fuk%2Fabout.asp
http://validator.w3.org/check?uri=www.pythononline.co.uk%2Fuk%2Fabout.asp

PythonOnline

http://www.pythononline.co.uk/uk/services.asp[01.04.2009 23:33:13]

Our services

PythonOnline offers the following services:

A free no-obligation discussion of your requirement, be it a revamp of an existing
website or the creation of something brand new

Registration of your domain name and reservation of server web space (which
comes with unlimited email addresses)

Design and creation of the website using text and images supplied by the client,
supplemented with custom and independently sourced images

Placement of the developed website onto the web server

We can also create graphic designs to match the style of the website for business
stationery such as letterheads, leaflets and business cards

In addition we can optionally provide a simple, non-technical facility to enable you to update
the content of the web pages we craft for you. With this invaluable system you can change the
images and text whenever you want and without incurring delays or extra costs.

On completion of the project we advise you of all the technical magic numbers that are
associated with the new website, so that if you choose to use another web host or the services
of another web developer, you are free to do so.

Websites developed for our clients will be written to modern standards which are intended to
improve the quality and consistency of the web pages when viewed by different browsers.

Prices start from as low as a few hundred pounds. Contact us to discuss your own project
without obligation.

Making websites for small businesses

Home About us Our services Our customers Contact us

http://validator.w3.org/check?uri=www.pythononline.co.uk%2Fuk%2Fservices.asp
http://validator.w3.org/check?uri=www.pythononline.co.uk%2Fuk%2Fservices.asp
http://validator.w3.org/check?uri=www.pythononline.co.uk%2Fuk%2Fservices.asp

PythonOnline

http://www.pythononline.co.uk/uk/customers.asp[01.04.2009 23:33:16]

Our customers

This page shows some of the websites we have created, covering such diverse subjects as a
hotel, a college, an adult education organization, a hairdressers, a yoga centre, a clairvoyant,
a museum attraction, a holiday home let, a village society and a designer clothing retailer.

We have done a number of websites for Parish Councils, one of which won the Local Council
Review / Co-Op Bank Website of the Year award, while another came second in the following
year's competition.

Metropolitan Home Improvements - loft
conversions in the South East

(In development) Sarlton Facilities -
mechanincal and electrical engineers

Piper for Weddings - bagpipes
professionally played on special occasions

Andromeda Vehicles - car leasing
company

Universal Wisdom - multi-language site
presenting the letters of Gurudev Shri
Ojaswi Sharma

The Brickwall Hotel - 16th century Tudor
mansion hotel and restaurant in Sussex

ACRES - Adult College for Rural East
Sussex

Casa Carlino - Holiday home near Mount
Vesuvius, Italy

David Rae Hair Spa - The London
Hairdressing Salon in Petts Wood Robertsbridge Community College - A

specialist mathematics and computing
college

The Hurstpierpoint Society - Preserving
the rural village environment of
Hurstpierpoint

Stephen Austen - Clairvoyant medium,
healer, channel, author and
metaphysician

Yesterday's World - The award-winning
attraction in Battle, East Sussex Yoga Universal - Yoga centre in the heart

of the Sussex countryside
Cheekyz Kidz - International retailer of
children's designer clothing

Salehurst Parish Council - Winner of the
Co-op Bank Website of the Year Award
2004

Making websites for small businesses

Home About us Our services Our customers Contact us

http://www.metroloft.co.uk/
http://www.metroloft.co.uk/
http://www.metroloft.co.uk/
http://www.piperforweddings.co.uk/
http://www.piperforweddings.co.uk/
http://www.piperforweddings.co.uk/
http://www.andromeda-vehicles.co.uk/
http://www.andromeda-vehicles.co.uk/
http://www.andromeda-vehicles.co.uk/
http://www.universalwisdom.in/
http://www.universalwisdom.in/
http://www.universalwisdom.in/
http://www.universalwisdom.in/
http://www.brickwallhotel.com/
http://www.brickwallhotel.com/
http://www.brickwallhotel.com/
http://www.acreslearning.org.uk/
http://www.acreslearning.org.uk/
http://www.acreslearning.org.uk/
http://www.casacarlino.com/
http://www.casacarlino.com/
http://www.casacarlino.com/
http://www.davidrae.co.uk/
http://www.davidrae.co.uk/
http://www.davidrae.co.uk/
http://www.robertsbridge.org.uk/
http://www.robertsbridge.org.uk/
http://www.robertsbridge.org.uk/
http://www.robertsbridge.org.uk/
http://www.hurstpierpointsociety.org.uk/
http://www.hurstpierpointsociety.org.uk/
http://www.hurstpierpointsociety.org.uk/
http://www.hurstpierpointsociety.org.uk/
http://www.stephenausten.com/
http://www.stephenausten.com/
http://www.stephenausten.com/
http://www.stephenausten.com/
http://www.yesterdaysworld.co.uk/
http://www.yesterdaysworld.co.uk/
http://www.yesterdaysworld.co.uk/
http://www.yogauniversal.co.uk/
http://www.yogauniversal.co.uk/
http://www.yogauniversal.co.uk/
http://www.cheekyz-kidz.com/
http://www.cheekyz-kidz.com/
http://www.cheekyz-kidz.com/
http://www.salehurst-pc.org.uk/
http://www.salehurst-pc.org.uk/
http://www.salehurst-pc.org.uk/
http://www.salehurst-pc.org.uk/

PythonOnline

http://www.pythononline.co.uk/uk/customers.asp[01.04.2009 23:33:16]

JumpCo - Supplier of quality portable
cross country fences

George Cross Island Association -
Commemorating the Siege of Malta 1940-
1943

Sussex Associations of Local Councils -
Providing support to parish councils

Tiny Fingers Tiny Toes - Hand crafted
ceramic impressions of babies' hands and
feet

Lindfield Rural Parish Council Hurstpierpoint Parish Council - Second
prize in the Co-op Bank Website of the
Year Award 2005

Eye Can Help - Dyslexia specialists

http://www.jumpco.co.uk/
http://www.jumpco.co.uk/
http://www.jumpco.co.uk/
http://www.georgecrossisland.org.uk/
http://www.georgecrossisland.org.uk/
http://www.georgecrossisland.org.uk/
http://www.georgecrossisland.org.uk/
http://www.sussexalc.org.uk/
http://www.sussexalc.org.uk/
http://www.sussexalc.org.uk/
http://www.tinyfingerstinytoes.co.uk/
http://www.tinyfingerstinytoes.co.uk/
http://www.tinyfingerstinytoes.co.uk/
http://www.tinyfingerstinytoes.co.uk/
http://www.lindfieldrural-pc.org.uk/
http://www.lindfieldrural-pc.org.uk/
http://www.hurstpierpoint-pc.org.uk/
http://www.hurstpierpoint-pc.org.uk/
http://www.hurstpierpoint-pc.org.uk/
http://www.hurstpierpoint-pc.org.uk/
http://www.eyecanhelp.com/
http://www.eyecanhelp.com/
http://validator.w3.org/check?uri=www.pythononline.co.uk%2Fuk%2Fcustomers.asp
http://validator.w3.org/check?uri=www.pythononline.co.uk%2Fuk%2Fcustomers.asp
http://validator.w3.org/check?uri=www.pythononline.co.uk%2Fuk%2Fcustomers.asp

PythonOnline

http://www.pythononline.co.uk/uk/contact.asp[01.04.2009 23:33:18]

Contact us

PythonOnline is based in Robertsbridge, East Sussex.

Please click here to contact us by email, or you can complete the form below if you prefer. In
either case we will respond as soon as possible.

Fields marked * are required

Name *

Telephone

Email address *

Repeat email address *

Enquiry *

Making websites for small businesses

Home About us Our services Our customers Contact us

javascript:get("104 468 163 73 486 796 9 73 91 600 348 562 600 829 363 540 486 540 486 512 73 486 468 759 891 540 759 9 950",989,185)
http://validator.w3.org/check?uri=www.pythononline.co.uk%2Fuk%2Fcontact.asp
http://validator.w3.org/check?uri=www.pythononline.co.uk%2Fuk%2Fcontact.asp
http://validator.w3.org/check?uri=www.pythononline.co.uk%2Fuk%2Fcontact.asp

[Valid] Markup Validation of http://www.pythononline.co.uk/uk/index.asp - W3C Markup Validator

http://validator.w3.org/check?uri=www.pythononline.co.uk%2Fuk%2Findex.asp[01.04.2009 23:33:23]

Help on the options is available.

 Markup Validation Service
Check the markup (HTML, XHTML, …) of Web documents

Jump To: Congratulations · Icons

This document was successfully checked as XHTML 1.1!
Result: Passed

Address :

Encoding : windows-1252 (detect automatically)

Doctype : XHTML 1.1 (detect automatically)

Root Element: html

Root Namespace: http://www.w3.org/1999/xhtml

The W3C validators are hosted on server technology donated by HP, and
supported by community donations.

Donate and help us build better tools for a better web.

Options

Show Source Show Outline List Messages Sequentially Group Error Messages by
Type

Validate error pages Verbose Output Clean up Markup with HTML Tidy

Congratulations

The document located at <http://www.pythononline.co.uk/uk/index.asp> was successfully checked as
XHTML 1.1. This means that the resource in question identified itself as "XHTML 1.1" and that we
successfully performed a formal validation using an SGML, HTML5 and/or XML Parser(s) (depending
on the markup language used).

"valid" Icon(s) on your Web page

To show your readers that you have taken the care to create an interoperable Web page, you may
display this icon on any page that validates. Here is the HTML you could use to add this icon to your

http://www.w3.org/QA/Tools/Donate
http://validator.w3.org/docs/users.html#Options
http://www.w3.org/
http://validator.w3.org/
http://www.w3.org/1999/xhtml
http://www.w3.org/QA/Tools/Donate

[Valid] Markup Validation of http://www.pythononline.co.uk/uk/index.asp - W3C Markup Validator

http://validator.w3.org/check?uri=www.pythononline.co.uk%2Fuk%2Findex.asp[01.04.2009 23:33:23]

Web page:
 <p>
 <img
 src="http://www.w3.org/Icons/valid-xhtml11"
 alt="Valid XHTML 1.1" height="31" width="88" />
 </p>

 <p>
 <img
 src="http://www.w3.org/Icons/valid-xhtml11-blue"
 alt="Valid XHTML 1.1" height="31" width="88" />
 </p>

A full list of icons, with links to alternate formats and colors, is available: If you like, you can download
a copy of the icons to keep in your local web directory, and change the HTML fragment above to
reference your local image rather than the one on this server.

Linking to this result

If you would like to create a link to this page (i.e., this validation result) to make it easier to revalidate
this page in the future or to allow others to validate your page, the URI is
<http://validator.w3.org/check?uri=http%3A%2F%2Fwww.pythononline.co.uk%2Fuk%2Findex.asp>
(or you can just add the current page to your bookmarks or hotlist).

Validating CSS Style Sheets

If you use CSS in your document, you can check it using the W3C CSS Validation Service.

↑ TOP

Home About... News Docs Help & FAQ Feedback Contribute

This service runs the W3C Markup Validator, v0.8.5.
COPYRIGHT © 1994-2009 W3C® (MIT, ERCIM, KEIO), ALL RIGHTS RESERVED. W3C

LIABILITY, TRADEMARK, DOCUMENT USE AND SOFTWARE LICENSING RULES
APPLY. YOUR INTERACTIONS WITH THIS SITE ARE IN ACCORDANCE WITH OUR

PUBLIC AND MEMBER PRIVACY STATEMENTS.

http://www.w3.org/Status
http://www.w3.org/Status
http://www.w3.org/QA/Tools/Donate
http://www.w3.org/QA/Tools/Icons
http://validator.w3.org/check?uri=http%3A%2F%2Fwww.pythononline.co.uk%2Fuk%2Findex.asp
http://www.w3.org/Style/CSS/
http://jigsaw.w3.org/css-validator/validator?uri=http%3A%2F%2Fwww.pythononline.co.uk%2Fuk%2Findex.asp
http://jigsaw.w3.org/css-validator/
http://validator.w3.org/
http://validator.w3.org/about.html
http://validator.w3.org/whatsnew.html
http://validator.w3.org/docs/
http://validator.w3.org/docs/help.html
http://validator.w3.org/docs/help.html
http://validator.w3.org/feedback.html
http://validator.w3.org/contribute.html
http://validator.w3.org/whatsnew.html#t2008-11-20
http://validator.w3.org/whatsnew.html#t2008-11-20
http://www.w3.org/Consortium/Legal/ipr-notice#Copyright
http://www.w3.org/
http://www.csail.mit.edu/
http://www.ercim.org/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/ipr-notice#Legal_Disclaimer
http://www.w3.org/Consortium/Legal/ipr-notice#W3C_Trademarks
http://www.w3.org/Consortium/Legal/copyright-documents
http://www.w3.org/Consortium/Legal/copyright-software
http://www.w3.org/Consortium/Legal/privacy-statement#Public
http://www.w3.org/Consortium/Legal/privacy-statement#Members

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial/index.htm[01.04.2009 23:33:32]

br

ET Mapping Tutorial

Introduction

This tutorial has been set up to help would-be mappers looking for a step-by-step guide from the beginning.
It assumes the reader has no idea how to use GtkRadiant and knows nothing about scripting and the like.

These pages were originally created for members of the TibeT clan and regular players on the TibeT servers,
but anyone finding this tutorial is welcome to use it :)

I don't claim to know everything about mapping but I've learnt enough from various sources to be able to
make maps of reasonable complexity. I've had a number of people asking various mapping questions and I
thought it was a better idea to explain it all once to anyone interested. The tutorial is incomplete but I
continue to add pages as I get the time.

Be aware that the subject is very large so there's a lot to explain; and that to make a decent fair-sized map
can easily take over 200 hours, so with this as a hobby you need a lot of patience and spare time, but at
least the tools to do the job are free. The best maps out there might have taken their authors 18 months to
create, depending on how much free time they had.

Disclaimer: I may be wrong in my understanding of any aspect of the subject, but hey, I'm doing my best :)

Introductory topics

To get from knowing nothing about mapping to being able to run around in your own first little map, follow
these introductory topics in order from start to finish.

Getting Started
Making your first brush
Making your first map

First set of intermediate topics

Create a building inside a landscape, with a destructible window and working door.

Creating an environment
Making a building outline in your environment
Making a door
Making a destructible window

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial/index.htm[01.04.2009 23:33:32]

Second set of intermediate topics

A break from brushes: a quick delve into some of the other mapping elements.

Creating the initial script
Creating the mission text to be shown as the map loads
Adding ambient sounds

Third set of intermediate topics

Back to Radiant again, for models, simple destructibles and constructibles. Starting to get more interesting
now. Don't attempt these unless you've completed the previous topics.

Planting a tree
Making stuff you can shoot up
Making barbed wire
Making a ladder
Making a constructible MG42

Fourth set of intermediate topics

A set of topics with some variety, helping you ease into some of the more complicated subjects..

Secure doors
Lighting
Detail brushes vs structural brushes
Health and ammo cabinets

Fifth set of intermediate topics

Some of the principal game features, the CP, bendy shapes and terrain.

Command Posts
Curved walls and arches
Cylinders, cones and curved roads
Making terrain using GtkGenSurf
Fine tuning the terrain by dragging vertices
Skyboxes

Sixth set of intermediate topics

Some topics that help to bring interest to your map.

Bespoke graphics
Making a constructible object like a ramp
Making a destructible object like a gate
Forward spawn flags
Water
Team speech

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial/index.htm[01.04.2009 23:33:32]

Final set of intermediate topics

This last set of intermediate topics cover the remaining components you'll want to make a distributable PK3
package.

Limbo camera and objectives narrative
Making the game end
Generating a tracemap
Making the command map
Making the picture to be shown while the map loads
Making a PK3 file

Advanced topics

This final set of topics covers some of the more complicated stuff that you may never want to use - but if
you've made it this far with the tutorial, you probably will :)

The Tank
Scripting in detail
Grabbing the gold or radar parts, etc
Making constructible/destructible doors
Bespoke sound
Making something simple move
Trucks
Shaders
Custom command map icons

2Bit Enemy Territory

http://www.pythononline.co.uk/et/berlin/index.htm[01.04.2009 23:33:34]

br

Berlin preview

Berlin screen shots

2Bit Enemy Territory

http://www.pythononline.co.uk/et/berlin/index.htm[01.04.2009 23:33:34]

2Bit Enemy Territory

http://www.pythononline.co.uk/et/berlin/index.htm[01.04.2009 23:33:34]

2Bit Enemy Territory

http://www.pythononline.co.uk/et/berlin/index.htm[01.04.2009 23:33:34]

2Bit Enemy Territory

http://www.pythononline.co.uk/et/berlin/index.htm[01.04.2009 23:33:34]

2Bit Enemy Territory

http://www.pythononline.co.uk/et/berlin/index.htm[01.04.2009 23:33:34]

2Bit Enemy Territory

http://www.pythononline.co.uk/et/berlin/index.htm[01.04.2009 23:33:34]

SimpleViewer

http://www.pythononline.co.uk/et/trooptrain/index.htm[01.04.2009 23:33:36]

SimpleViewer

http://www.pythononline.co.uk/et/trooptrain/index.htm[01.04.2009 23:33:36]

SimpleViewer

http://www.pythononline.co.uk/et/cluedo/index.htm[01.04.2009 23:33:37]

SimpleViewer

http://www.pythononline.co.uk/et/cluedo/index.htm[01.04.2009 23:33:37]

SimpleViewer

http://www.pythononline.co.uk/et/operation_chariot/index.htm[01.04.2009 23:33:38]

SimpleViewer

http://www.pythononline.co.uk/et/operation_chariot/index.htm[01.04.2009 23:33:38]

SimpleViewer

http://www.pythononline.co.uk/et/rtcw_depot2/index.htm[01.04.2009 23:33:39]

SimpleViewer

http://www.pythononline.co.uk/et/rtcw_depot2/index.htm[01.04.2009 23:33:39]

SimpleViewer

http://www.pythononline.co.uk/et/radar_summer/index.htm[01.04.2009 23:33:39]

SimpleViewer

http://www.pythononline.co.uk/et/radar_summer/index.htm[01.04.2009 23:33:39]

http://www.pythononline.co.uk/et/images/c33.jpg[01.04.2009 23:33:40]

http://www.pythononline.co.uk/et/images/c20.jpg[01.04.2009 23:33:41]

http://www.pythononline.co.uk/et/images/c21.jpg[01.04.2009 23:33:41]

http://www.pythononline.co.uk/et/images/c22.jpg[01.04.2009 23:33:42]

http://www.pythononline.co.uk/et/images/c30.jpg[01.04.2009 23:33:43]

http://www.pythononline.co.uk/et/images/c31.jpg[01.04.2009 23:33:44]

http://www.pythononline.co.uk/et/images/tiger.jpg[01.04.2009 23:33:44]

http://www.pythononline.co.uk/et/images/6flags_1.jpg[01.04.2009 23:33:45]

http://www.pythononline.co.uk/et/images/6flags_2.jpg[01.04.2009 23:33:45]

2Bit Enemy Territory

http://www.pythononline.co.uk/et/ludendorff.htm[01.04.2009 23:33:47]

 Ludendorff Bridge
Gameplay

This webpage has been created to provide a description of the gameplay in Ludendorff Bridge (the bridge at
Remagen). There are enough novel gameplay features that I thought it worth explaining them here, so that
readers will immediately know how to play the map if they encounter it. Please visit www.tibetclan.com for
details of TibeT servers that the map may be playing on.

ET elements used in a non-standard way are highlighted with this:

Scenario

The Allies wish to capture the bridge intact to allow their armour to cross the Rhine. The Axis must destroy
the bridge to prevent this, but not so soon that their own troops cannot retreat across it. The action takes
place mostly on the bridge, which has been built to scale.

http://www.tibetclan.com/
http://www.pythononline.co.uk/et/ludendorff/ludendorff0.jpg

2Bit Enemy Territory

http://www.pythononline.co.uk/et/ludendorff.htm[01.04.2009 23:33:47]

Click for a larger image

Winning the game

The game only ends when the timer (20 mins) expires - no sooner and no later.

AXIS WIN: if at game end, they have planted explosives on both bridge supports.

ALLIES WIN: if at game end, there are no explosives planted on the bridge supports.

If at game end there are explosives planted on just one bridge support, the winning team is chosen
randomly. This is because neither side knows whether one set of explosives is enough to destroy
the bridge. It also ensures both teams don't camp defensively - they need to get both supports

secure to ensure a victory.

When explosives are planted on a bridge support, a large flag is erected on one of the Axis towers, and the
corresponding flag on the Allied tower is taken down. Similarly the opposite happens when the Allies defuse
the explosives. The game starts with one set of explosives already planted.

Click for a larger image

Spawn flags

There are 3 spawn flags along the bridge.

Your forces can only spawn at the farthest flag in an unbroken line of friendly-controlled flags. For
example, if your team controls all 3 flags, you can spawn at any of them, including the farthest from
your base. If the enemy then takes the flag nearest to your base, the chain is broken and the two

flags further foward are cut off. You would then only be able to spawn at your base.

Starting respawn times are 10 seconds for each team.

When your team captures a flag, you may or may not be able to spawn there (see above). However
your respawn time increases by 5 seconds for each flag captured. This represents the problems of
supply lines, and has the effect of aiding the defender who has been beaten back to his starting

point by making it progessively harder for the aggressive team, the further they advance. When a team
loses a flag, their respawn time drops again by 5 seconds.

The {TibeT} Tank

The tank on the bridge can be damaged, repaired and driven by both teams. If accompanied
by Allies, it will advance West. If accompanied by Axis, it will advance East. If players from both
teams are near the tank, it will stop.

http://www.pythononline.co.uk/et/ludendorff/ludendorff1.jpg

2Bit Enemy Territory

http://www.pythononline.co.uk/et/ludendorff.htm[01.04.2009 23:33:47]

The tank has a number of uses.

It provides mobile fire support with its MG42.
It provides mobile cover for advancing troops.
When it is halted by a tank barrier near the ends of the bridge, it turns sideways to give following
troops maximum cover from enemy fire.
It acts as a minesweeper to clear enemy mines from the gravel paths alongside the railway tracks.

Gameplay

This is intended to be a brief, fierce battle on a long bridge, in which teamwork will be vital for success.
There is a lot of cover provided in the shape of wrecked vehicles, sandbags, crates and improvised defensive
barriers built by engineers, all of which makes the snipers' job harder. The constructed barriers can be
destroyed by satchel charges. The crates provide good cover but can eventually be destroyed by gunfire.

I hope you'll enjoy the map :)

Screenshots

Click for a larger image

http://www.pythononline.co.uk/et/ludendorff/ludendorff2.jpg
http://www.pythononline.co.uk/et/ludendorff/ludendorff3.jpg
http://www.pythononline.co.uk/et/ludendorff/ludendorff4.jpg

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial05b.htm[01.04.2009 23:33:51]

ET Mapping Tutorial
Lesson 5b

Topics

Making a building outline in your environment

Floor and ceiling

Back to main menu

Floor and Ceiling [Top]

Run Radiant. Open the tutorial map. Adjust zoom and scroll (right-click and drag) in the 2D window so you
can see your building outline. You might want to move your 3D view too so that you can see what you are
building in the 2D window.

A quick way to find the area you want in your 2D window, which happens more often as the map gets
bigger and more complicated, is to select one of the brushes of interest in the 3D view, and then press
ctrl+tab. The selected brush is now centred in the 2D window. Usually you would press ctrl+tab twice
more to return to the top down view.

Press 8 to make the floor brush creation very easy.

We're going to want to make a couple of caulk brushes - rather than create them with a random texture then
caulk them, we'll set the texture before creating the brushes: click on the Caulk texture in the textures
window.

Make a brush as shown in this picture.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial05b.htm[01.04.2009 23:33:51]

Press ctrl+tab to get a side view. Press 4 to reduce the grid scale, and then reduce the height of your floor
down to very flat:

Press ctrl+tab twice to get back to the normal 2D view. Press ESC.

Draw another brush as shown. This one will be of the right height already as you will immediately see in the
3D window :)

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial05b.htm[01.04.2009 23:33:51]

Press ESC. Select the environment ceiling brush and Hide it - you will only accidentally keep selecting it
otherwise. You can reveal hidden brushes with shift+H.

With floors and ceilings it is often the case that you accept some overlap with the walls, and don't worry
about the strip of texture "wasted". It can become just too grim trying to angle everything to prevent this.
However, for the purpose of making quick progress we are creating this building sitting on the main exterior
hull-caulked wall (which we've given a snow texture to on one side) and ordinarily you don't do that.
Generally we will have created terrain and then set the building into it; or the building will be contained in its
own volume of space, like our original tiny room.

In both of those cases you can usually create an efficient floor space, in the knowledge of what the player will
actually be able to see. We'll get to this later.

So for now we're being a little quick and dirty, but it will have a negligible effect on FPS so don't worry.

Let's move our walls up a notch so that they sit on the new floor.

Select all the walls in the 3D window by shift+clicking them all one after the other.

Press ctrl+tab to get a side view.

Move the walls up one notch so they rest on the floor brushes.

Press ESC, ctrl+tab twice, and right-click/drag the building back into view if it has wandered off centre.

Let's texture the floor. In the 3D view, ctrl+shift+click a floor brush face.

Then ctrl+shift+alt+click the other brush's floor face.

Then click Textures/egypt/egypt_floor_sd and click the block-16sq texture.

Remember you can adjust the relative sizes of the Radiant windows so you can access more easily what you
want at any given time. So I made the textures window bigger, clicked the texture I wanted, and then made
it back to smaller again. Also I find the Texture Window Scale of 50% to usually be the most workable.

Press ESC to deselect the faces and press 8 to go back to a big grid scale. Always worth doing as a habit.

You may have noticed that with a small grid scale, when you zoom out, the grid display loses the

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial05b.htm[01.04.2009 23:33:51]

finer lines and only draws major lines, giving the impression of a larger grid scale. Mind you don't
get caught out by this.

As the walls are now sitting on the floor, we can see a thin rim around the bottom which is the caulked sides
of the floor brushes. We'll need to texture them too.

You can also see that by texturing the lower edge of the longer floor brush, half of its length will be obscured
by the square floor brush, which is something we can easily avoid and it demonstrates another option
available to the mapper, the Clipper Tool:

Select the large floor brush, and either press X or click the button shown:

Click on the vertices shown in this picture, starting with the uppermost one. When you click on the first one,
the number 1 will appear next to it. When you click on the second, the number 2 will appear, and the brush
will be shown with a dividing line defined by where you clicked 1 and 2, with one chunk shown yellow and the
other still red.

The Clipper Tool has two functions. It can...

1. Crop an unwanted chunk of a brush: if you were to press Return (don't in this instance), the yellow
section would remain and the red would be deleted.

2. Split a brush into two: if you press shift+Return (yes please, do it now) the brush is merely split along
the line defined.

Both chunks remain selected and the cropper tool remains active. Press ESC (or X or click the button again)
to turn off the cropper.

Press ESC to deselect the brushes.

Now we can texture all the wall rim without having some texture wastefully drawn but not visible.

Select all the wall rims by ctrl+shift+clicking one followed by ctrl+shift+alt+clicking all the others (in the 3D
view). You'll need to use the right-click in the 3D window to allow free movement/turning in that view so you
can see all the rims. Don't forget the ones round the back.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial05b.htm[01.04.2009 23:33:51]

Apply a suitable texture, say Textures/town/town_wall town_c61a. Press ESC.

Another good habit to cultivate is to deselect anything you're done with. A very common error is to
leave something selected, then select and work on something else, then wonder wtf mangled your
first brush into such a bizarre shape :(

We'll hold off from putting a ceiling on for a minute. Let's make an opening in a wall so we can walk through
it. If you make a mistake during this, use ctrl+z to undo. Also might be worth doing a quick file save before
you start, for good measure :)

Select the indicated wall in the 3D window, and press ctrl+tab to see it side on.

Press 5 for a smaller grid scale, then use the clipper tool and define a cut line as shown:

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial05b.htm[01.04.2009 23:33:51]

Press shift+return to divide the brush into 2.

In the 3D window, click on the smaller chunk to deselect it, leaving the other selected and the clipper
active. Then define another cut as shown.

Press shift+return to divide the brush into 2.

In the 3D window, click on the larger chunk to deselect it, leaving the other selected and the clipper active.
Then define another cut as shown.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial05b.htm[01.04.2009 23:33:51]

This time we want to make an empty door space, but the yellow chunk is the wrong one to keep - so press
ctrl+return to swap the yellow marker over, then press Return.

Press ESC twice now, as we are done clipping.

We have an opening. The faces of the opening are caulk so we must do something about it.

For now, we won't bother putting in a door frame, we'll be a bit quick and dirty and texture the visible caulk.
This is slightly wasteful, because the two side faces extend up beside the small chunk of wall over the
doorway. Later when we make the door, we'll fix this. As I said, sometimes it won't be worth the grief in
trying to stop everything from being drawn if it won't be seen - but if you do this where practicable, you'll
keep the FPS up and everyone playing will be grateful that your map doesn't play like running through
custard :)

Select the 3 caulked faces that surround the door opening. Apply Textures/wood wood_c01 and press ESC.

This leads us to another useful technique, that of being able to orientate a texture. We can see that the
upright wooden texture looks fine, but the crossmember texture is aligned 90 degrees to what we really
wanted.

Select the face with the wrongly aligned texture. Press S to get access to the Surface Inspector. Click the
indicated up arrow twice to rotate the texture through 90 degrees and click Done.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial05b.htm[01.04.2009 23:33:51]

Press ESC to deselect the face. Looks good now :)

Probably about time for you to trial your creation so far. Let's put the allied start point indoors.

Press ctrl+tab until you get the overhead view. Shift+click on the blue box and the yellow box behind it.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial05b.htm[01.04.2009 23:33:51]

You can actually select entities this way even through intervening regular brushes, which is quite handy.

Drag them into the room.

Press ctrl+tab and you will see the player start is buried in the ground. Lift the entities up a notch until the
player is on or just above the floor.

Press ESC and then select the player start point alone. Press ctrl+tab to get the overhead view. If you zoom
in you will see an arrow in the blue box. It indicates the direction the player will be looking in when he
spawns.

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial05b.htm[01.04.2009 23:33:51]

Let's get him to face the door. Press N. At bottom left of the Entities window is a little cluster of boxes with
degree angle numbers written in them. Their arrangement in the box indicates the direction the number
represents. Click the 270 button.

Close the Entities window and press ESC - you can see now that the player will arrive facing the door.

Save your work, compile it and give it a little playtest. You should see something like this:

2Bit Enemy Territory

http://www.pythononline.co.uk/et/tutorial05b.htm[01.04.2009 23:33:51]

Notice that the indoor footsteps sound is different to the snowy. The tiles used don't actually have any
special sound properties given to them (in the way that the snow texture has). Instead ET uses a default
footstep sound for anything not coming with its own sound defined - and the default is fine for this sort of
texture when walked on.

Well done if you've reached this far successfully. You've actually used many of the viewing/selecting/editing
techniques and tools that will be your mainstay for much of your mapping career. We'll add more to them
later on. In the next lesson we'll put in a ceiling then go on to put some lights inside the room, make a door
and some windows we can shoot.

Next lesson

http://www.pythononline.co.uk/et/tutorial05c.htm

human rights tibet free shirt at thetibetclan.com

http://www.thetibetclan.com/[01.04.2009 23:33:54]

Finance
Free Credit Report
Car Insurance
Credit Card

Application

Dating
Online Personals
Christian Singles
Jewish Singles

Travel
Airline tickets
Hotels
Car rental

Home
Foreclosures
Houses For Sale
Mortgage

Welcome to thetibetclan.com

Human Rights Tibet

Free Tibet Shirt

Tibet Chat

Clan

Tara Tibet

Tibet Europe

1959 Tibetan

Tibetan News

Chinese Authority

Chinese Crackdown

Chinese Military Force

This domain may be for sale. Buy this Domain

http://www.acquirethisname.com/Default.aspx?domain=thetibetclan.com

	www.pythononline.co.uk
	2Bit Enemy Territory
	2bit.PythonOnline.co.uk
	2Bit Enemy Territory
	2Bit Enemy Territory
	2Bit Enemy Territory
	2Bit Enemy Territory
	2Bit Enemy Territory
	2Bit Enemy Territory
	2Bit Enemy Territory
	2Bit Enemy Territory
	2Bit Enemy Territory
	2Bit Enemy Territory
	2Bit Enemy Territory
	2Bit Enemy Territory
	2Bit Enemy Territory
	2Bit Enemy Territory
	2Bit Enemy Territory
	2Bit Enemy Territory
	2Bit Enemy Territory
	2Bit Enemy Territory
	2Bit Enemy Territory
	2Bit Enemy Territory
	2Bit Enemy Territory
	2Bit Enemy Territory
	2Bit Enemy Territory
	2Bit Enemy Territory
	2Bit Enemy Territory
	2Bit Enemy Territory
	2Bit Enemy Territory
	2Bit Enemy Territory
	2Bit Enemy Territory
	2Bit Enemy Territory
	2Bit Enemy Territory
	2Bit Enemy Territory
	2Bit Enemy Territory
	2Bit Enemy Territory
	2Bit Enemy Territory
	2Bit Enemy Territory
	2Bit Enemy Territory
	2Bit Enemy Territory
	2Bit Enemy Territory
	2Bit Enemy Territory
	http://www.pythononline.co.uk/et/images/c33.jpg
	http://www.pythononline.co.uk/et/images/c20.jpg
	http://www.pythononline.co.uk/et/images/c21.jpg
	http://www.pythononline.co.uk/et/images/c22.jpg
	http://www.pythononline.co.uk/et/images/c30.jpg
	http://www.pythononline.co.uk/et/images/c31.jpg
	http://www.pythononline.co.uk/et/images/tiger.jpg
	http://www.pythononline.co.uk/et/images/6flags_1.jpg
	http://www.pythononline.co.uk/et/images/6flags_2.jpg
	2Bit Enemy Territory
	2Bit Enemy Territory

	UuY28udWsvdWsvY29udGFjdC5hc3AA:
	form5:
	name:
	telephone:
	email:
	repeatemail:
	comments:
	input0:

	8udWslMkZ1ayUyRmluZGV4LmFzcAA=:
	form7:
	input3:
	uri: http://www.pythononline.co.uk/uk/index.asp
	charset: [(detect automatically)]
	doctype: [Inline]
	ss: 1
	outline: 1
	group: 0
	No200: 1
	verbose: 1
	st: 1

	d3dy50aGV0aWJldGNsYW4uY29tLwA=:
	parking_form:
	tsearch:
	search_button:

